LTC2978 [Linear Systems]

Octal Digital Power Supply Manager with EEPROM; 与EEPROM八路数字电源管理器
LTC2978
型号: LTC2978
厂家: Linear Systems    Linear Systems
描述:

Octal Digital Power Supply Manager with EEPROM
与EEPROM八路数字电源管理器

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总80页 (文件大小:1131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2978  
Octal Digital Power Supply  
Manager with EEPROM  
FEATURES  
DESCRIPTION  
2
The LTC®2978 is an octal, digital power-supply monitor,  
supervisor, sequencer, and margin controller. Eight output  
channels can be managed per user defined configura-  
tion settings. Supervisory functions include fault OV/UV  
threshold limits for eight output channels and one input  
channel.Programmablefaultdependenciesandresponses  
allow the power supplies to be disabled with optional retry  
after a fault has been detected. Serial bus telemetry allows  
eight output voltages, one input voltage, die temperature  
and fault status to be monitored. In addition, odd num-  
bered channels can be configured to measure the voltage  
acrossacurrentsenseresistor. Powersupplysequencing,  
precisionpoint-of-loadvoltageadjustmentandmargining  
are supported with PMBus commands. A programmable  
watchdog timer monitors microprocessor activity for a  
stalled condition and resets the microprocessor if neces-  
sary. The 1-wire synchronization bus supports power  
supply sequencing across multiple LTC digital power  
devices. User programmable parameters can be stored  
in EEPROM. Faults and telemetry data can be logged to  
EEPROM for diagnostic analysis.  
n
I C/SMBus Serial Interface  
n
PMBus Compliant Command Set  
n
Configuration EEPROM with CRC  
n
Black Box Fault Logging to Internal EEPROM  
n
Differential Input, 16-Bit ΔΣ ADC with Less Than  
±±.2ꢀ5 of Total Unadjusted Error  
n
Eight Voltage Servos Precisely Adjust Output  
Voltages Using Eight 1±-Bit DACs with Soft-Connect  
n
Monitors Eight Output Voltages and One Input  
Voltage and Internal Die Temperature  
n
8-Channel Sequencer  
n
Programmable Watchdog Timer  
n
Eight UV/OV V  
and One V Supervisor  
OUT  
IN  
n
n
n
n
Supports Multi-Channel Fault Management  
Operates Autonomously without Additional Software  
LTC2978 Can Be Powered from 3.3V or 4.ꢀV to 1ꢀV  
Available in 64-pin 9mm × 9mm QFN package  
APPLICATIONS  
n
Computers  
n
Network Servers  
n
L, LT, LTC, LTM, PolyPhase, Linear Technology and the Linear logo are registered trademarks  
and LTpowerPlay ia a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 73823±3 and 742±3ꢀ9.  
Industrial Test and Measurement  
High Reliability Systems  
Medical Imaging  
Video  
n
n
n
TYPICAL APPLICATION  
Typical ADC Total Unadjusted  
Octal Power Supply Controller with PMBus Interface  
Error vs Temperature  
0.035  
0.030  
ADC V = 1.8V  
IN  
V
4.5V < V  
IBUS  
< 15V  
IN  
V
V
V
IN_SNS  
V
PWR  
OUT  
3.3V**  
V
DIGITALLY  
DD33  
DACP0  
0.025  
MANAGED  
POWER  
V
R30  
SENSEP0  
TO INTERMEDIATE  
BUS CONVERTER ENABLE  
V
IN_EN  
R20  
R10  
0.020  
0.015  
0.010  
0.005  
SUPPLY  
LTC2978*  
V
SDA  
LOAD  
FB  
SCL  
V
PMBus  
DACM0  
INTERFACE  
ALERTB  
V
SENSEM0  
SGND  
CONTROL0  
WP  
V
RUN/SS  
OUT_EN0  
GND  
WRITE-PROTECT  
PWRGD  
TO µP RESETB INPUT  
0
WDI/RESETB  
ASEL0  
WATCHDOG  
–50  
–5  
25 40 55 70 85 100  
–35 –20  
10  
TIMER INTERRUPT  
FAULTB00  
TO/FROM OTHER  
LTC2978s  
TEMPERATURE (°C)  
SHARE_CLK  
ASEL1  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
2978 TA01b  
GND  
2978 TA01a  
**LTC2978 MAY BE POWERED FROM EITHER AN  
EXTERNAL 3.3V SUPPLY OR THE INTERMEDIATE BUS  
2978fc  
1
LTC2978  
TABLE OF CONTENTS  
Features..................................................... 1  
Applications ................................................ 1  
Typical Application ........................................ 1  
Description.................................................. 1  
Absolute Maximum Ratings.............................. 4  
Order Information.......................................... 4  
Pin Configuration .......................................... 4  
Electrical Characteristics................................. 5  
PMBus Timing Diagram................................... 9  
Typical Performance Characteristics ..................10  
Pin Functions..............................................14  
Block Diagram.............................................16  
Operation...................................................17  
Operation Overview ................................................ 17  
EEPROM............................................................. 17  
Reset ...................................................................... 18  
Write-Protect Pin.................................................... 18  
Other Operations .................................................... 18  
Clock Sharing ..................................................... 18  
PMBus Serial Digital Interface................................ 19  
PMBus................................................................ 19  
Device Address...................................................22  
Processing Commands.......................................23  
PMBus Command Summary ............................24  
Summary Table...................................................24  
Data Formats......................................................28  
PMBus Command Description..........................29  
Operation, Mode and EEPROM Commands ............29  
PAGE ..................................................................29  
OPERATION........................................................3±  
ON_OFF_CONFIG................................................31  
CLEAR_FAULTS..................................................31  
WRITE_PROTECT...............................................32  
STORE_USER_ALL and RESTORE_USER_ALL .32  
CAPABILITY........................................................32  
VOUT_MODE ......................................................33  
Output Voltage Related Commands........................33  
VOUT_COMMAND, VOUT_MAX, VOUT_MARGIN_  
HIGH, VOUT_MARGIN_LOW, VOUT_OV_FAULT_  
LIMIT, VOUT_OV_WARN_LIMIT, VOUT_UV_  
VIN_ON, VIN_OFF, VIN_OV_FAULT_LIMIT, VIN_  
OV_WARN_LIMIT, VIN_UV_WARN_LIMIT and  
VIN_UV_FAULT_LIMIT .......................................33  
Temperature Related Commands............................34  
OT_FAULT_LIMIT, OT_WARN_LIMIT, UT_WARN_  
LIMIT and UT_FAULT_LIMIT...............................34  
Timer Limits ...........................................................34  
TON_DELAY, TON_RISE, TON_MAX_FAULT_  
LIMIT and TOFF_DELAY......................................34  
Fault Response for Voltages Measured by the High  
Speed Supervisor ...................................................3ꢀ  
VOUT_OV_FAULT_RESPONSE and VOUT_UV_  
FAULT_RESPONSE .............................................3ꢀ  
Fault Response for Values Measured by the ADC ...36  
OT_FAULT_RESPONSE, UT_FAULT_RESPONSE,  
VIN_OV_FAULT_RESPONSE and VIN_UV_FAULT_  
RESPONSE .........................................................36  
Timed Fault Response ............................................36  
TON_MAX_FAULT_RESPONSE..........................36  
Status Commands ..................................................37  
STATUS_BYTE:...................................................37  
STATUS_WORD:.................................................38  
STATUS_VOUT ...................................................38  
STATUS_INPUT..................................................39  
STATUS_TEMPERATURE....................................39  
STATUS_CML .....................................................4±  
STATUS_MFR_SPECIFIC....................................4±  
ADC Monitoring Commands................................... 41  
READ_VIN .......................................................... 41  
READ_VOUT....................................................... 41  
READ_TEMPERATURE_1 .................................. 41  
PMBUS_REVISION............................................. 41  
Manufacturer Specific Commands..........................42  
MFR_CONFIG_LTC2978.....................................42  
MFR_CONFIG_ALL_LTC2978 ............................43  
MFR_FAULTz±_PROPAGATE, MFR_FAULTz1_  
PROPAGATE .......................................................44  
MFR_PWRGD_EN ..............................................4ꢀ  
MFR_FAULTB±±_RESPONSE, MFR_FAULTB±1_  
RESPONSE, MFR_FAULTB1±_RESPONSE and  
MFR_FAULTB11_RESPONSE..............................46  
MFR_VINEN_OV_FAULT_RESPONSE.................47  
MFR_VINEN_UV_FAULT_RESPONSE.................48  
WARN_LIMIT, VOUT_UV_FAULT_LIMIT, POWER_  
GOOD_ON and POWER_GOOD_OFF ..................33  
Input Voltage Related Commands...........................33  
2978fc  
2
LTC2978  
TABLE OF CONTENTS  
MFR_RETRY_DELAY..........................................48  
MFR_RESTART_DELAY......................................49  
MFR_VOUT_PEAK ..............................................49  
MFR_VIN_PEAK .................................................49  
MFR_TEMPERATURE_PEAK..............................49  
MFR_DAC...........................................................±  
MFR_POWERGOOD_ASSERTION_DELAY .........±  
Watchdog Operation...............................................±  
MFR_WATCHDOG_T_FIRST and MFR_  
V
Off Threshold Voltage................................64  
OUT  
Automatic Restart Via MFR_RESTART_DELAY  
Command and CONTROLn pin ...........................64  
Fault Management ..................................................64  
Output Overvoltage and Undervoltage Faults .....64  
Output Overvoltage and Undervoltage Warnings6ꢀ  
Configuring the V  
Output............................6ꢀ  
IN_EN  
Multichannel Fault Management ........................67  
Interconnect Between Multiple LTC2978s...............67  
Application Circuits.................................................69  
Trimming and Margining DC/DC Converters with  
External Feedback Resistors...............................69  
Four-Step Resistor Selection Procedure for DC/DC  
Converters with External Feedback Resistors.....69  
Trimming and Margining DC/DC Converters with a  
TRIM Pin ............................................................7±  
Two-Step Resistor and DAC Full-Scale Voltage  
Selection Procedure for DC/DC Converters with a  
TRIM Pin ............................................................7±  
Measuring Current..............................................71  
Measuring Current with a Sense Resistor...........71  
Measuring Current with Inductor DCR................71  
Single Phase Design Example ............................72  
Measuring Multiphase Currents..........................72  
Multiphase Design Example ...............................72  
Anti-aliasing Filter Considerations ......................73  
Sensing Negative Voltages .................................73  
WATCHDOG_T ....................................................±  
MFR_PAGE_FF_MASK ....................................... ꢀ1  
MFR_PADS.........................................................2  
MFR_I2C_BASE_ADDRESS ...............................2  
MFR_SPECIAL_ID..............................................2  
MFR_SPECIAL_LOT...........................................ꢀ3  
MFR_VOUT_DISCHARGE_THRESHOLD.............ꢀ3  
MFR_COMMON..................................................ꢀ3  
MFR_SPARE±.....................................................ꢀ3  
MFR_SPARE2.....................................................ꢀ3  
MFR_VOUT_MIN ................................................ꢀ4  
MFR_VIN_MIN ...................................................ꢀ4  
MFR_TEMPERATURE_MIN ................................ꢀ4  
Fault Log Operation ................................................ꢀ4  
MFR_FAULT_LOG_STORE .................................ꢀꢀ  
MFR_FAULT_LOG_RESTORE.............................ꢀꢀ  
MFR_FAULT_LOG_CLEAR..................................ꢀꢀ  
MFR_FAULT_LOG_STATUS................................ꢀꢀ  
MFR_FAULT_LOG...............................................ꢀ6  
Applications Information ................................62  
Overview.................................................................62  
Powering the LTC2978............................................62  
Setting Command Register Values .........................62  
Sequence, Servo, Margin and Restart Operations ..62  
Command Units On or Off..................................62  
On Sequencing ...................................................63  
On State Operation .............................................63  
Servo Modes ......................................................63  
DAC Modes.........................................................63  
Margining ...........................................................64  
Off Sequencing...................................................64  
2
Connecting the USB to I C/SMBus/PMBus Controller  
to the LTC2978 in System....................................... 74  
LTpowerPlay: An Interactive GUI for Digital Power .76  
PCB Assembly and Layout Suggestions .................77  
Bypass Capacitor Placement ..............................77  
Exposed Pad Stencil Design...............................77  
PC Board Layout.................................................77  
Unused ADC Sense Inputs..................................77  
Package Description .....................................78  
Revision History ..........................................79  
Typical Application .......................................80  
Related Parts..............................................80  
2978fc  
3
LTC2978  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
Supply Voltages:  
TOP VIEW  
V
V
V
V
to GND ......................................... –±.3V to 1ꢀV  
PWR  
IN_SNS  
DD33  
DD2ꢀ  
to GND...................................... –±.3V to 1ꢀV  
to GND ....................................... –±.3V to 3.6V  
to GND ..................................... –±.3V to 2.7ꢀV  
V
V
V
V
V
V
V
V
1
2
3
4
5
6
7
8
9
48 V  
47 V  
46 V  
45 V  
44 V  
43 V  
42 V  
41 V  
40 V  
39 V  
38 V  
37 V  
36 V  
SENSEM6  
SENSEP3  
SENSEM2  
SENSEP2  
DACM2  
Digital Input/Output Voltages:  
V
SENSEP7  
SENSEM7  
ALERTB, SDA, SCL, CONTROL±,  
CONTROL1............................................ –±.3V to ꢀ.ꢀV  
PWRGD, SHARE_CLK,  
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUT_EN4  
OUT_EN5  
DACP2  
SENSEM1  
SENSEP1  
DACM1  
WDI/RESETB, WP....................–±.3V to V  
FAULTB±±, FAULTB±1, FAULTB1±,  
FAULTB11 ................................–±.3V to V  
ASEL±, ASEL1..........................–±.3V to V  
Analog Voltages:  
+ ±.3V  
DD33  
65  
DACP1  
V
10  
11  
12  
OUT_EN6  
DACP0  
V
+ ±.3V  
+ ±.3V  
OUT_EN7  
DACM0  
DD33  
DD33  
V
IN_EN  
SENSEM0  
SENSEP0  
DNC 13  
V
14  
15  
16  
35 REFM  
34 REFP  
33 ASEL1  
IN_SNS  
V
PWR  
REFP................................................... –±.3V to 1.3ꢀV  
REFM to GND........................................ –±.3V to ±.3V  
V
DD33  
V
V
V
V
V
V
to GND................................. –±.3V to 6V  
to GND ................................ –±.3V to 6V  
OUT_EN[3:±] IN_EN  
SENSEP[7:±]  
SENSEM[7:±]  
, V  
to GND .................. –±.3V to 1ꢀV  
UP PACKAGE  
to GND................................. –±.3V to 6V  
OUT_EN[7:4]  
DACP[7:±]  
DACM[7:±]  
64-LEAD (9mm × 9mm) PLASTIC QFN  
to GND .................................... –±.3V to 6V  
T
JMAX  
= 12ꢀ°C, θ  
= 7°C/W, θ  
= 1°C/W  
JC-BOTTOM  
JC-TOP  
EXPOSED PAD (PIN 6ꢀ) IS GND, MUST BE SOLDERED TO PCB  
to GND ................................ –±.3V to ±.3V  
Operating Junction Temperature Range:  
LTC2978C................................................ ±°C to 7±°C  
LTC2978I .............................................–4±°C to 8ꢀ°C  
Storage Temperature Range .................. –6ꢀ°C to 12ꢀ°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2978CUP#PBF  
LTC2978IUP#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2978UP  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE JUNCTION  
±°C to 7±°C  
LTC2978CUP#TRPBF  
LTC2978IUP#TRPBF  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
LTC2978UP  
–4±°C to 8ꢀ°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2978fc  
4
LTC2978  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, VDD25 and REF pins floating, unless  
otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Characteristics  
l
l
l
l
V
V
V
V
V
V
Supply Input Operating Range  
Supply Current  
4.ꢀ  
1ꢀ  
13  
13  
2.8  
V
mA  
mA  
V
PWR  
PWR  
PWR  
DD33  
DD33  
DD33  
I
I
4.ꢀV ≤ V  
≤ 1ꢀV, V  
Floating  
DD33  
1±  
1±  
PWR  
PWR  
Supply Current  
3.13V ≤ V  
≤ 3.47V, V  
= V  
PWR  
VDD33  
DD33  
DD33  
DD33  
V
Undervoltage Lockout  
Undervoltage Lockout  
Hysteresis  
V
Ramping Up, V = V  
PWR  
2.3ꢀ  
2.ꢀꢀ  
12±  
UVLO_VDD33  
DD33  
mV  
l
l
l
l
l
V
Supply Input Operating Range  
Regulator Output Voltage  
V
= V  
3.13  
3.13  
7ꢀ  
3.47  
3.47  
14±  
2.6  
V
V
DD33  
PWR  
DD33  
4.ꢀV ≤ V  
≤ 1ꢀV  
3.26  
9±  
PWR  
Regulator Output Short-Circuit Current  
Regulator Output Voltage  
V
PWR  
= 4.ꢀV, V  
= ±V  
DD33  
mA  
V
V
3.13V ≤ V  
≤ 3.47V  
2.3ꢀ  
3±  
2.ꢀ  
ꢀꢀ  
DD2ꢀ  
DD33  
DD33  
Regulator Output Short-Circuit Current  
V
PWR  
= V  
= 3.47V, V  
= ±V  
8±  
mA  
DD2ꢀ  
Voltage Reference Characteristics  
V
REF  
Output Voltage  
1.232  
3
V
ppm/°C  
ppm  
Temperature Coefficient  
Hysteresis  
(Note 3)  
1±±  
ADC Characteristics  
l
V
Voltage Sense Input Range  
Differential Voltage:  
= (V  
±
6
V
IN_ADC  
V
– V  
)
IN_ADC  
SENSEPn  
SENSEMn  
l
l
l
Single-Ended Voltage: V  
Single-Ended Voltage: V  
–±.1  
–±.1  
–17±  
±.1  
6
V
V
SENSEMn  
Current Sense Input Range (Odd  
Numbered Channels Only)  
, V  
SENSEPn SENSEMn  
Differential Voltage: V  
17±  
mV  
IN_ADC  
N_ADC  
Voltage Sense Resolution Uses L16  
Format  
±V ≤ V ≤ 6V  
122  
µV/LSB  
IN_ADC  
Current Sense Resolution (Odd  
Numbered Channels Only)  
±mV ≤ |V  
| < 16mV (Note13)  
1ꢀ.62ꢀ  
31.2ꢀ  
62.ꢀ  
µV/LSB  
µV/LSB  
µV/LSB  
µV/LSB  
µV/LSB  
IN_ADC  
16mV ≤ |V  
32mV ≤ |V  
| < 32mV  
IN_ADC  
IN_ADC  
IN_ADC  
| < 63.9mV  
63.9mV ≤ |V  
127.9mV ≤ |V  
| < 127.9mV  
12ꢀ  
|
2ꢀ±  
IN_ADC  
l
l
l
TUE_ADC  
INL_ADC  
Total Unadjusted Error  
Integral Nonlinearity  
V
≥ 1.8V (Note 4 )  
±±.2ꢀ  
±8ꢀ4  
±31.3  
5
µV  
µV  
IN_ADC  
Voltage Sense Mode (Note ꢀ)  
Current Sense Mode, Odd Numbered  
Channels Only, 1ꢀ.6µV/LSB (Note ꢀ)  
l
l
DNL_ADC  
Differential Nonlinearity  
Offset Error  
Voltage Sense Mode  
±4±±  
µV  
µV  
Current Sense Mode, Odd Numbered  
Channels Only  
±31.3  
l
l
V
Voltage Sense Mode  
±2ꢀ±  
±3ꢀ  
µV  
µV  
OS_ADC  
Current Sense Mode, Odd Numbered  
Channels Only  
l
l
GAIN_ADC  
Gain Error  
Voltage Sense Mode, V  
= 6V  
±±.2  
±±.2  
5
5
IN_ADC  
Current Sense Mode, Odd Numbered  
Channels Only, V = ±±.17V  
IN_ADC  
2978fc  
5
LTC2978  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25 and REF pins floating, unless  
otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
6.1ꢀ  
24.6  
24.6  
1
MAX  
UNITS  
ms  
t
Conversion Time  
Voltage Sense Mode (Note 6)  
Current Sense Mode (Note 6)  
Temperature Input (Note 6)  
CONV_ADC  
ms  
ms  
C
Input Sampling Capacitance  
Input Sampling Frequency  
Input Leakage Current  
pF  
IN_ADC  
IN_ADC  
IN_ADC  
f
I
62.ꢀ  
kHz  
µA  
l
V
= ±V, ±V ≤ V  
≤ 6V,  
COMMONMODE  
±±.ꢀ  
IN_ADC  
Current Sense Mode  
l
l
Differential Input Current  
V
V
= ±.17V, Current Sense Mode  
= 6V, Voltage Sense Mode  
8±  
1±  
2ꢀ±  
1ꢀ  
nA  
µA  
IN_ADC  
IN_ADC  
Voltage Buffered IDAC Output Characteristics  
N_V  
Resolution  
1±  
Bits  
DACP  
l
l
V
Full-Scale Output Voltage  
(Programmable)  
DAC Code = ±x3FF Buffer Gain Setting_±  
1.32  
2.ꢀ3  
1.38  
2.6ꢀ  
1.44  
2.77  
V
V
FS_VDACP  
DAC Polarity = 1  
Buffer Gain Setting_1  
l
l
l
INL_V  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Voltage  
(Note 7)  
±2  
LSB  
LSB  
mV  
DACP  
DNL_V  
(Note 7)  
±2.4  
±1±  
DACP  
OS_VDACP  
DACP  
V
V
(Note 7)  
Load Regulation (V  
– V  
)
V
DACPn  
V
DACPn  
= 2.6ꢀV, I Sourcing = 2mA  
VDACPn  
1±±  
1±±  
6±  
ppm/mA  
ppm/mA  
dB  
DACPn  
DACMn  
= ±.1V, I  
Sinking = 2mA  
VDACPn  
PSRR (V  
– V  
)
DC: 3.13V ≤ V  
≤ 3.47V, V  
= V  
PWR DD33  
DACPn  
DACMn  
DD33  
1±±mV Step in 2±ns with ꢀ±pF Load  
–±.1V ≤ V ≤ ±.1V  
4±  
dB  
DC CMRR (V  
– V  
)
6±  
dB  
DACPn  
DACMn  
DACMn  
l
l
l
Leakage Current  
V
DACPn  
V
DACPn  
V
DACPn  
V
DACPn  
Hi-Z, ±V ≤ V  
≤ 6V  
±1±±  
–4  
nA  
DACPn  
Short-Circuit Current Low  
Short-Circuit Current High  
Output Capacitance  
Shorted to GND  
–1±  
4
mA  
Shorted to V  
Hi-Z  
1±  
mA  
DD33  
C
OUT  
1±  
pF  
t
DAC Output Update Rate  
Fast Servo Mode  
2ꢀ±  
µs  
S_VDACP  
Voltage Supervisor Characteristics  
l
l
V
IN_VS  
Input Voltage Range (Programmable)  
V
= (V  
SENSEMn  
Low Resolution Mode  
High Resolution Mode  
±
±
6
3.8  
V
V
IN_VS  
SENSEPn  
)
– V  
l
Single-Ended Voltage: V  
–±.1  
±.1  
V
mV/LSB  
mV/LSB  
5
SENSEMn  
N_VS  
Voltage Sensing Resolution  
Total Unadjusted Error  
±V to 3.8V Range: High Resolution Mode  
±V to 6V Range: Low Resolution Mode  
4
8
l
l
l
TUE_VS  
2V ≤ V  
≤ 6V, Low Resolution Mode  
±1.2ꢀ  
±1.±  
±1.ꢀ  
IN_VS  
1.ꢀV < V  
±.8V ≤ V  
≤ 3.8V, High Resolution Mode  
≤ 1.ꢀV, High Resolution Mode  
5
IN_VS  
IN_VS  
5
t
Update Rate  
12.21  
9±  
µs  
S_VS  
V
Input Characteristics  
IN_SNS  
l
l
V
V
Input Voltage Range  
±
1ꢀ  
V
VIN_SNS  
IN_SNS  
IN_SNS  
R
V
Input Resistance  
7±  
11±  
kΩ  
VIN_SNS  
2978fc  
6
LTC2978  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25 and REF pins floating, unless  
otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
TUE  
PARAMETER  
, V  
CONDITIONS  
3V ≤ V  
VIN_SNS  
MIN  
TYP  
MAX  
±2.±  
±1.±  
±1.ꢀ  
±1.±  
UNITS  
5
l
l
l
l
V
Threshold Total  
≤ 8V  
≤ 8V  
VIN_SNS  
IN_ON IN_OFF  
Unadjusted Error  
V
> 8V  
5
VIN_SNS  
READ_V Total Unadjusted Error  
3V ≤ V  
5
IN  
VIN_SNS  
V
> 8V  
5
VIN_SNS  
Voltage Buffered IDAC Soft-Connect Comparator Characteristics  
Offset Voltage  
Temperature Sensor Characteristics  
TUE_TS Total Unadjusted Error  
l
V
±3  
±1  
±18  
mV  
°C  
OS_CMP  
V
OUT  
Enable Output (V  
[3:0]) Characteristics  
OUT_EN  
l
l
l
V
Output High Voltage (Note 12)  
I
= –ꢀµA, V = 3.3V  
DD33  
11.6  
–ꢀ  
3
12.ꢀ  
–6  
14.7  
–8  
8
V
µA  
VOUT_ENn  
VOUT_ENn  
VOUT_ENn  
I
Output Sourcing Current  
Output Sinking Current  
V
Pull-Up Enabled, V  
= 1V  
VOUT_ENn  
VOUT_ENn  
Strong Pull-Down Enabled,  
= ±.4V  
mA  
V
VOUT_ENn  
l
l
Weak Pull-Down Enabled, V  
= ±.4V  
33  
ꢀ±  
6±  
±1  
µA  
µA  
VOUT_ENn  
Output Leakage Current  
Internal Pull-Up Disabled,  
±V ≤ V  
≤ 1ꢀV  
VOUT_ENn  
V
Enable Output (V  
[7:4]) Characteristics  
OUT  
OUT_EN  
l
l
I
Output Sinking Current  
Strong Pull-Down Enabled,  
OUT_ENn  
3
6
9
mA  
µA  
VOUT_ENn  
V
= ±.1V  
Output Leakage Current  
±V ≤ V  
≤ 6V  
±1  
VOUT_ENn  
V
Enable Output (V ) Characteristics  
IN_EN  
IN  
l
l
l
l
V
Output High Voltage  
Output Sourcing Current  
Output Sinking Current  
Leakage Current  
I
= –ꢀµA, V = 3.3V  
DD33  
11.6  
–ꢀ  
3
12.ꢀ  
–6  
14.7  
–8  
8
V
µA  
VIN_EN  
VIN_EN  
VIN_EN  
I
V
V
Pull-Up Enabled, V  
= 1V  
IN_EN  
VIN_EN  
= ±.4V  
mA  
µA  
VIN_EN  
Internal Pull-Up Disabled,  
±V ≤ V ≤ 1ꢀV  
±1  
VIN_EN  
EEPROM Characteristics  
l
Endurance  
(Notes 8, 11)  
±°C < T < 8ꢀ°C During EEPROM Write  
1±,±±±  
1±  
Cycles  
J
Operations  
l
l
Retention  
(Notes 8, 11)  
T < 8ꢀ°C  
J
Years  
ms  
Mass_Write Mass Write Operation Time (Note 9)  
STORE_USER_ALL, ±°C < T < 8ꢀ°C During  
44±  
2±  
41±±  
1.ꢀ  
J
EEPROM Write Operations  
Digital Inputs SCL, SDA, CONTROL0, CONTROL1, WDI/RESETB, FAULTB00, FAULTB01, FAULTB10, FAULTB11, WP  
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis  
2.1  
V
V
IH  
l
IL  
mV  
µA  
HYST  
LEAK  
l
l
I
Input Leakage Current  
±V ≤ V ≤ ꢀ.ꢀV, SDA, SCL, CONTROLx  
±2  
±2  
PIN  
Pins Only  
±V ≤ V ≤ V  
+ ±.3V, FAULTBxx,  
µA  
PIN  
DD33  
WDI/RESETB, WP Pins Only  
FAULTBxx, CONTROLx Pins Only  
SDA, SCL Pins Only  
t
t
Pulse Width of Spike Suppressed  
1±  
98  
µs  
ns  
SP  
Minimum Low Pulse Width for  
Externally Generated Faults  
11±  
ms  
FAULT_MIN  
2978fc  
7
LTC2978  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25 and REF pins floating, unless  
otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
3±±  
±.3  
TYP  
MAX  
UNITS  
µs  
l
l
l
t
t
f
Pulse Width to Assert Reset  
Pulse Width to Reset Watchdog Timer  
Watchdog Interrupt Input Frequency  
Digital Input Capacitance  
V
V
≤ 1.ꢀV  
≤ 1.ꢀV  
RESETB  
WDI  
WDI/RESETB  
WDI/RESETB  
2±±  
1
µs  
MHz  
pF  
WDI  
C
1±  
IN  
Digital Input SHARE_CLK  
l
l
l
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Frequency Operating Range  
Assertion Low Time  
Rise Time  
1.6  
V
V
IH  
±.8  
11±  
1.1  
4ꢀ±  
±1  
IL  
f
t
t
I
9±  
kHz  
µs  
SHARE_CLK_IN  
LOW  
V
V
< ±.8V  
±.82ꢀ  
SHARE_CLK  
< ±.8V to V  
> 1.6V  
ns  
RISE  
SHARE_CLK  
SHARE_CLK  
Input Leakage Current  
Input Capacitance  
±V ≤ V  
≤ V + ±.3V  
DD33  
µA  
pF  
LEAK  
SHARE_CLK  
C
1±  
IN  
Digital Outputs SDA, ALERTB, PWRGD, SHARE_CLK, FAULTB00, FAULTB01, FAULTB10, FAULTB11  
l
l
V
Digital Output Low Voltage  
I
= 3mA  
±.4  
V
OL  
SINK  
f
Output Frequency Operating Range  
ꢀ.49kΩ Pull-Up to V  
9±  
1±±  
11±  
kHz  
SHARE_CLK_OUT  
DD33  
Digital Inputs ASEL0,ASEL1  
l
l
l
l
V
V
Input High Threshold Voltage  
Input Low Threshold Voltage  
High, Low Input Current  
Hi-Z Input Current  
V
DD33  
– ±.ꢀ  
V
V
IH  
±.ꢀ  
±9ꢀ  
±24  
IL  
I
I
ASEL[1:±] = ±, V  
µA  
µA  
pF  
IH,IL  
IH, Z  
DD33  
C
Input Capacitance  
1±  
IN  
Serial Bus Timing Characteristics  
l
l
l
l
f
t
t
t
Serial Clock Frequency (Note 1±)  
Serial Clock Low Period (Note 1±)  
Serial Clock High Period (Note 1±)  
1±  
1.3  
±.6  
1.3  
4±±  
kHz  
µs  
SCL  
LOW  
HIGH  
BUF  
µs  
Bus Free Time Between Stop and Start  
(Note 1±)  
µs  
l
l
l
l
t
t
t
t
Start Condition Hold Time (Note 1±)  
Start Condition Setup Time (Note 1±)  
Stop Condition Setup Time (Note 1±)  
6±±  
6±±  
6±±  
±
ns  
ns  
ns  
ns  
HD,STA  
SU,STA  
SU,STO  
HD,DAT  
Data Hold Time (LTC2978 Receiving  
Data) (Note 1±)  
l
l
Data Hold Time (LTC2978 Transmitting  
Data) (Note 1±)  
3±±  
1±±  
9±±  
ns  
t
t
Data Setup Time (Note 1±)  
ns  
ns  
SU,DAT  
Pulse Width of Spike Suppressed  
(Note 1±)  
98  
SP  
l
l
t
Time Allowed to Complete any PMBus Longer Timeout = ±  
Command After Which Time SDA Will Longer Timeout = 1  
Be Released and Command Terminated  
2ꢀ  
2±±  
3ꢀ  
28±  
ms  
ms  
TIMEOUT_BUS  
2978fc  
8
LTC2978  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to any Absolute Maximum  
Rating for extended periods may affect device reliability and lifetime.  
Note 7: Nonlinearity is defined from the first code that is greater than or  
equal to the maximum offset specification to full-scale code, 1±23.  
Note 8: EEPROM endurance and retention are guaranteed by design,  
characterization and correlation with statistical process controls. The  
minimum retention specification applies for devices whose EEPROM has  
been cycled less than the minimum endurance specification.  
Note 2: All currents into device pins are positive. All currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified. If power is supplied to the chip via the V  
pin only, connect  
DD33  
V
and V  
pins together.  
PWR  
DD33  
Note 9: The LTC2978 will not acknowledge any PMBus commands while a  
mass write operation is being executed. This includes the STORE_USER_ALL  
and MFR_FAULT_LOG_STORE commands or a fault log store initiated by a  
channel faulting off.  
Note 3: Hysteresis in the output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 2ꢀ°C, but the IC is  
cycled to 8ꢀ°C or –4±°C before successive measurements. Hysteresis is  
roughly proportional to the square of the temperature change.  
Note 10: Maximum capacitive load, C , for SCL and SDA is 4±±pF. Data  
B
and clock rise time (t ) and fall time (t )ꢀare:ꢀ(20ꢀ+ꢀ0.1ꢀ•ꢀC ) (ns) < t < 3±±ns  
r
f
B
r
Note 4: TUE(5) is defined as:  
andꢀ(20ꢀ+ꢀ0.1ꢀ•ꢀC ) (ns) < t < 3±±ns. C = capacitance of one bus line in pF.  
B f B  
SCL and SDA external pull-up voltage, V , is 3.13V < V < ꢀ.ꢀV.  
IO  
IO  
GainꢀErrorꢀ(%)ꢀ+ꢀ100ꢀ•ꢀ(INLꢀ+ꢀV )/V .  
OS IN  
Note 11: EEPROM endurance and retention will be degraded when T > 8ꢀ°C.  
J
Note 5: Integral nonlinearity (INL) is defined as the deviation of a code  
from a straight line passing through the actual endpoints of the transfer  
curve (±V and 6V). The deviation is measured from the center of the  
quantization band.  
Note 6: The time between successive ADC conversions (latency of the  
ADC)ꢀforꢀanyꢀgivenꢀchannelꢀisꢀgivenꢀas:ꢀ36.9msꢀ+ꢀ(6.15msꢀ•ꢀnumberꢀofꢀ  
ADCꢀchannelsꢀconfiguredꢀinꢀLowꢀResolutionꢀmode)ꢀ+ꢀ(24.6msꢀ•ꢀnumberꢀofꢀ  
ADC channels configured in High Resolution mode).  
Note 12: Output enable pins are charge pumped from V  
.
DD33  
Note 13: The current sense resolution is determined by the L11 format  
and the mV units of the returned value. For example a full scale value  
–2  
ofꢀ170mVꢀreturnsꢀaꢀL11ꢀvalueꢀofꢀ0xF2A8ꢀ=ꢀ680ꢀ•ꢀ2 = 17±. This is the  
lowest range that can represent this value without overflowing the L11  
–2  
mantissa and the resolution for 1LSB in this range is 2 mV = 2ꢀ±µV.  
Each successively lower range improves resolution by cutting the LSB size  
in half.  
PMBUS TIMING DIAGRAM  
SDA  
t
r
t
SU(DAT)  
t
t
SP  
t
r
HD(SDA)  
t
t
t
t
f
BUF  
f
LOW  
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
HIGH  
HD(DAT)  
2978 TD  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
START  
CONDITION CONDITION  
2978fc  
9
LTC2978  
TYPICAL PERFORMANCE CHARACTERISTICS  
ADC Total Unadjusted Error  
vs Temperature  
Temperature Sensor Error  
Reference Voltage vs Temperature  
vs Temperature  
1.2355  
1.2350  
1.2345  
1.2340  
1.2335  
1.2330  
1.2325  
1.2320  
1.2315  
1.2310  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.035  
0.030  
ADC V = 1.8V  
IN  
0.025  
0.020  
0.015  
0.010  
0.005  
THREE TYPICAL PARTS  
0
–50 –35 –20 –5 10 25  
100  
–50 –35 –20 –5 10 25 40 55 70 85 100  
–50  
–5  
55  
100  
70 85  
40 55 70 85  
–35 –20  
10 25 40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2978 G01  
2978 G02  
2978 G03  
ADC Zero Code Center Offset  
Voltage vs Temperature  
ADC-INL  
ADC-DNL  
0.8  
0.6  
0
–20  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VOLTAGE SENSE MODE  
122µV/LSB  
122µV/LSB  
0.4  
–40  
0.2  
–60  
0
–80  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–100  
–120  
–140  
–160  
–180  
–0.5  
–1.0  
–1.5  
–0.2 0.8  
1.8  
2.8  
3.8  
4.8  
–50 –35 –20 –5 10 25  
100  
–0.2 0.8  
1.8  
2.8  
3.8  
4.8  
5.8  
40 55 70 85  
5.8  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
2978 G06  
2978 G04  
2978 G05  
ADC Rejection  
vs Frequency at VIN  
ADC Rejection  
vs Frequency at VIN (Zoom)  
ADC Rejection vs Frequency  
at VIN (Current Sense Mode)  
0
0
0
–20  
–20  
–20  
–40  
–60  
–40  
–60  
–40  
–60  
–80  
–100  
–120  
–80  
–100  
–120  
–80  
–100  
–120  
0
12500 25000 37500 50000 62500  
FREQUENCY (Hz)  
0
3125  
6250  
FREQUENCY (Hz)  
9375  
12500  
0
12500 25000 37500 50000 62500  
FREQUENCY (Hz)  
2978 G07  
2978 G08  
2978 G09  
2978fc  
10  
LTC2978  
TYPICAL PERFORMANCE CHARACTERISTICS  
ADC Rejection vs Frequency  
Voltage Supervisor Total  
Unadjusted Error vs Temperature  
ADC Noise Histogram  
at VIN (Current Sense Mode, Zoom)  
1200  
1000  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
V
IN  
= 0V  
V
= 0.8V  
IN  
HIGH RESOLUTION MODE  
HIGH RESOLUTION MODE  
–20  
800  
600  
–40  
–60  
400  
200  
0
–80  
–100  
–120  
–20  
–10  
0
10  
20  
0
3125  
6250  
9375  
12500  
–50 –35 –20 –5 10 25 40 55 70 85 100  
READ_V  
(µV)  
FREQUENCY (Hz)  
OUT  
TEMPERATURE (°C)  
2978 G11  
2978 G10  
2978 G12  
DAC Full-Scale Output Voltage vs  
Temperature  
Input Sampling Current  
vs Differential Input Voltage  
ADC High Resolution Mode  
Differential Input Current  
2.698  
9
8
7
6
5
4
3
2
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
2.696  
2.694  
2.692  
2.690  
2.688  
2.686  
2.684  
2.682  
2.680  
2.678  
0
0
–50 –35 –20 –5 10 25 40 55 70 85 100  
TEMPERATURE (°C)  
0
1
2
3
6
4
5
0
20 40 60 80 100  
180  
120 140 160  
INPUT VOLTAGE (V)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
2978 G15  
2978 G13  
2978 G14  
DAC Offset Voltage vs  
Temperature  
DAC-INL  
DAC DNL  
1.0  
0.8  
1.0  
0.8  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
–50 –35 –20 –5 10 25 40 55 70 85 100  
DAC CODE  
DAC CODE  
TEMPERATURE (°C)  
2978 G17  
2978 G18  
2978 G16  
2978fc  
11  
LTC2978  
TYPICAL PERFORMANCE CHARACTERISTICS  
DAC Short-Circuit Current vs  
Temperature  
DAC Load Regulation (Sourcing)  
DAC Load Regulation (Sinking)  
2.698  
2.696  
2.694  
2.692  
2.690  
2.688  
2.686  
2.684  
2.682  
2.680  
2.678  
9.00  
8.95  
0.1038  
0.1036  
0.1034  
0.1032  
0.1030  
0.1028  
0.1026  
85°C  
85°C  
25°C  
25°C  
8.90  
8.85  
8.80  
8.75  
8.70  
–40°C  
–40°C  
0
–1  
–1.50 1.75  
–50 –35 –20 –5 10 25 40 55 70 85 100  
TEMPERATURE (°C)  
–0.25 –0.5 –0.75  
–1.25  
–2  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
CURRENT (mA)  
CURRENT (mA)  
2978 G19  
2978 G21  
2978 G20  
DAC Soft Connect Transient  
Response when Transitioning from  
Hi-Z State to ON State  
DAC Soft Connect Transient  
Response when Transitioning from  
ON State to Hi-Z State  
DAC Transient Response to 1LSB  
DAC Code Change  
CODE ‘h200  
HI-Z  
HI-Z  
500µV/DIV  
10mV/DIV  
10mV/DIV  
CONNECTED  
CONNECTED  
CODE ‘h1FF  
2978 G22  
2978 G24  
2978 G23  
2µs/DIV  
500µs/DIV  
500µs/DIV  
100k SERIES RESISTANCE ON  
CODE: ‘h1FF  
100k SERIES RESISTANCE ON  
CODE: ‘h1FF  
VDD33 Regulator Output Voltage  
vs Temperature  
VDD33 Regulator Short-Circuit  
Current vs Temperature  
VDD33 Regulator Line Regulation  
3.275  
3.270  
3.265  
3.260  
3.255  
3.250  
3.245  
3.240  
3.235  
–86  
–88  
400  
300  
85°C  
25°C  
200  
–90  
100  
–92  
–40°C  
0
–94  
–100  
–200  
–300  
–400  
–96  
–98  
–100  
–102  
–500  
–50 –35 –20 –5 10 25 40 55 70 85 100  
–50 –35 –20 –5 10 25 40 55 70 85 100  
4.5  
6
7.5  
9
15  
10.5 12 13.5  
(V)  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
PWR  
2978 G25  
2978 G27  
2978 G26  
2978fc  
12  
LTC2978  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOUT_EN[3:0] and VIN_EN Output  
High Voltage vs Load Current  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
9.9  
10.16  
10.14  
V
= V  
DD33  
V
= 12V  
PWR  
PWR  
85°C  
25°C  
10.12  
–40°C  
10.10  
10.08  
10.06  
10.04  
9.8  
9.5  
10.02  
3.1  
3.2  
3.4  
3
3.5  
3.6  
3.3  
0
1
2
3
7
4
5
6
–50  
–5  
25 40 55 70 85 100  
–35 –20  
10  
CURRENT SOURCING (µA)  
V
(V)  
TEMPERATURE (°C)  
DD33  
2978 G28  
2978 G30  
2978 G29  
V
OUT_EN[3:0] and VIN_EN VOL  
DAC Output Impedance vs  
Frequency  
VOUT_EN[7:4] VOL vs Current  
vs Current  
1000  
100  
10  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
85°C  
85°C  
25°C  
25°C  
1
–40°C  
–40°C  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1000  
0
8
12  
(mA)  
16  
20  
24  
8
12  
4
0
2
4
6
(mA)  
10  
I
FREQUENCY (kHz)  
I
SINK  
SINK  
2978 G31  
2978 G33  
2978 G32  
PWRGD and FAULTBzn VOL  
vs Current  
ALERTB VOL vs Current  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
8
12  
0
2
4
6
10  
0
4
6
8
10  
12  
2
I
(mA)  
I
(mA)  
SINK  
SINK  
2978 G35  
2978 G34  
2978fc  
13  
LTC2978  
PIN FUNCTIONS  
PIN NAME  
PIN NUMBER  
PIN TYPE  
In  
DESCRIPTION  
V
V
V
V
V
V
V
V
V
V
V
V
1*  
2*  
3*  
4
6
7
8
9
1±  
11  
12  
13  
14  
DC/DC Converter Differential (–) Output Voltage-6 Sensing Pin  
DC/DC Converter Differential (+) Output Voltage or Current-7 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage or Current-7 Sensing Pin  
DC/DC Converter Enable-± Pin. Output High Voltage Optionally Pulled Up to 12V by ꢀµA  
DC/DC Converter Enable-1 Pin. Output High Voltage Optionally Pulled Up to 12V by ꢀµA  
DC/DC Converter Enable-2 Pin. Output High Voltage Optionally Pulled Up to 12V by ꢀµA  
DC/DC Converter Enable-3 Pin. Output High Voltage Optionally Pulled Up to 12V by ꢀµA  
DC/DC Converter Open-Drain Pull-Down Output-4  
DC/DC Converter Open-Drain Pull-Down Output-ꢀ  
DC/DC Converter Open-Drain Pull-Down Output-6  
DC/DC Converter Open-Drain Pull-Down Output-7  
DC/DC Converter V ENABLE Pin. Output High Voltage Optionally Pulled Up to 12V by ꢀµA  
SENSEM6  
SENSEP7  
SENSEM7  
OUT_EN±  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUT_EN4  
OUT_ENꢀ  
OUT_EN6  
OUT_EN7  
IN_EN  
In  
In  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
±ut  
IN  
DNC  
Do Not Connect Do Not Connect to This Pin  
V
In  
V SENSE Input. This Voltage is Compared Against the V On and Off Voltage Thresholds in Order to  
IN IN  
Determine When to Enable and Disable, Respectively, the Downstream DC/DC Converters  
IN_SNS  
V
1ꢀ  
16  
In  
V
Serves as the Unregulated Power Supply Input to the Chip (4.ꢀV to 1ꢀV). If a 4.ꢀV to 1ꢀV Supply  
PWR  
PWR  
Voltage is Unavailable, Short V  
GND with ±.1µF Capacitor.  
to V  
and Power the Chip Directly from a 3.3V Supply. Bypass to  
PWR  
DD33  
V
In/Out  
If Shorted to V  
, it Serves as 3.13V to 3.47V Supply Input Pin. Otherwise it is a 3.3V Internally  
PWR  
DD33  
Regulated Voltage Output (Use 1±±nF Decoupling Capacitor to GND)  
Input for Internal 2.ꢀV Sub-Regulator. Short This Pin to Pin 16  
2.ꢀV Internally Regulated Voltage Output. Bypass to GND with a ±.1µF Capacitor  
Digital Input. Write-Protect Input Pin, Active High  
Power Good Open-Drain Output. Indicates When Outputs are Power Good. Can be Used as System  
Power-On Reset. The Latency of This Signal May Be as Long as the ADC Latency. See Note 6.  
V
V
WP  
17  
18  
19  
2±  
In  
In/Out  
In  
DD33  
DD2ꢀ  
PWRGD  
Out  
SHARE_CLK  
WDI/RESETB  
21  
22  
In/Out  
In  
Bidirectional Clock Sharing Pin. Connect a ꢀ.49k Pull-Up Resistor to V  
DD33  
Watchdog Timer Interrupt and Chip Reset Input. Connect a 1±k Pull-Up Resistor to V  
. Rising Edge  
DD33  
Resets Watchdog Counter. Holding This Pin Low for More Than t  
Resets the Chip  
RESETB  
FAULTB±±  
FAULTB±1  
FAULTB1±  
FAULTB11  
23  
24  
2ꢀ  
26  
In/Out  
In/Out  
In/Out  
In/Out  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-±±. Connect a 1±k Pull-Up  
Resistor to V  
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-±1. Connect a 1±k Pull-Up  
Resistor to V  
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-1±. Connect a 1±k Pull-Up  
Resistor to V  
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-11. Connect a 1±k Pull-Up  
Resistor to V  
DD33  
SDA  
SCL  
27  
28  
29  
3±  
31  
32  
33  
34  
3ꢀ  
36*  
37*  
38  
39  
4±  
In/Out  
In  
Out  
In  
In  
In  
PMBus Bidirectional Serial Data Pin  
PMBus Serial Clock Input Pin (4±±kHz Maximum)  
Open-Drain Output. Generates an Interrupt Request in a Fault/Warning Situation  
Control Pin ± Input  
Control Pin 1 Input  
Ternary Address Select Pin ± Input. Connect to V  
Ternary Address Select Pin 1 Input. Connect to V  
Reference Voltage Output. Needs ±.1µF Decoupling Capacitor to REFM  
Reference Return Pin. Needs ±.1µF Decoupling Capacitor to REFP.  
DC/DC Converter Differential (+) Output Voltage-± Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-± Sensing Pin  
DAC± Return. Connect to Channel ± DC/DC Converter’s GND Sense or Return to GND  
DAC± Output  
ALERTB  
CONTROL±  
CONTROL1  
ASEL±  
ASEL1  
REFP  
, GND or Float to Encode 1 of 3 Logic States  
, GND or Float to Encode 1 of 3 Logic States  
DD33  
In  
DD33  
Out  
Out  
In  
REFM  
V
V
V
V
V
SENSEP±  
SENSEM±  
DACM±  
DACP±  
In  
Out  
Out  
Out  
DAC1 Output  
DACP1  
2978fc  
14  
LTC2978  
PIN FUNCTIONS  
PIN NAME  
PIN NUMBER  
PIN TYPE  
Out  
In  
DESCRIPTION  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
41  
DAC1 Return. Connect to Channel 1 DC/DC Converter’s GND Sense or Return to GND  
DC/DC Converter Differential (+) Output Voltage or Current-1 Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-1 Sensing Pins  
DAC2 Output  
DAC2 Return. Connect to Channel 2 DC/DC Converter’s GND Sense or Return to GND  
DC/DC Converter Differential (+) Output Voltage-2 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-2 Sensing Pin  
DC/DC Converter Differential (+) Output Voltage or Current-3 Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-3 Sensing Pins  
DAC3 Output  
DAC3 Return. Connect to Channel 3 DC/DC Converter’s GND Sense or Return to GND  
DC/DC Converter Differential (+) Output Voltage-4 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-4 Sensing Pin  
DAC4 Return. Connect to Channel 4 DC/DC Converter’s GND Sense or Return to GND  
DAC4 Output  
DACM1  
42*  
43*  
44  
SENSEP1  
SENSEM1  
DACP2  
In  
Out  
Out  
In  
In  
In  
4ꢀ  
DACM2  
46*  
47*  
48*  
49*  
ꢀ±  
SENSEP2  
SENSEM2  
SENSEP3  
SENSEM3  
DACP3  
In  
Out  
Out  
In  
ꢀ1  
DACM3  
ꢀ2*  
ꢀ3*  
ꢀ4  
ꢀꢀ  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
6±  
SENSEP4  
SENSEM4  
DACM4  
In  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
In  
DACP4  
DACꢀ Output  
DACPꢀ  
DACꢀ Return. Connect to Channel ꢀ DC/DC Converter’s GND Sense or Return to GND  
DAC6 Return. Connect to Channel 6 DC/DC Converter’s GND Sense or Return to GND  
DAC6 Output  
DACMꢀ  
DACM6  
DACP6  
DAC7 Output  
DACP7  
61  
DAC7 Return. Connect to Channel 7 DC/DC Converter’s GND Sense or Return to GND  
DC/DC Converter Differential (+) Output Voltage or Current-ꢀ Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-ꢀ Sensing Pins  
DC/DC Converter Differential (+) Output Voltage-6 Sensing Pin  
Exposed Pad, Must be Soldered to PCB  
DACM7  
62*  
63*  
64*  
6ꢀ  
SENSEPꢀ  
SENSEMꢀ  
SENSEP6  
In  
In  
Ground  
GND  
*Any unused V  
or V  
or V pins must be tied to GND.  
DACMn  
SENSEPn  
SENSEMn  
2978fc  
15  
LTC2978  
BLOCK DIAGRAM  
3.3V REGULATOR  
IN  
V
15  
16  
V
V
OUT  
PWR  
V
DD  
V
DD33  
2.5V REGULATOR  
IN  
OUT  
V
V
17  
18  
V
V
DD33  
DD25  
3R  
V
V
SENSEM0  
SENSEP0  
V
14  
IN_SNS  
R
V
V
SENSEM1  
36  
37  
42  
43  
46  
47  
48  
49  
52  
53  
62  
63  
64  
1
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SENSEP0  
SENSEM0  
SENSEP1  
SENSEM1  
SENSEP2  
SENSEM2  
SENSEP3  
SENSEM3  
SENSEP4  
SENSEM4  
SENSEP5  
SENSEM5  
SENSEP6  
SENSEM6  
SENSEP7  
SENSEM7  
SENSEP1  
GND 65  
V
V
SENSEM2  
SENSEP2  
V
V
SENSEM3  
SENSEP3  
+
+
V
V
SENSEM4  
SENSEP4  
INTERNAL  
TEMP  
SENSOR  
CMP0  
MUX  
+
10-BIT  
VDAC  
V
V
SENSEM5  
SENSEP5  
V
V
SENSEM6  
SENSEP6  
V
V
SENSEM7  
SENSEP7  
+
16-BIT  
+
∑ ADC  
2
SC  
CMP0  
3
DAC0  
10 BITS  
+
ADC  
CLOCKS  
39  
40  
44  
50  
55  
56  
59  
60  
V
V
V
V
V
V
V
V
VBUF0  
DACP0  
DACP1  
DACP2  
DACP3  
DACP4  
DACP5  
DACP6  
DACP7  
V
DD  
REFERENCE  
1.232V  
REFP 34  
REFM 35  
(TYP)  
38  
41  
45  
51  
54  
57  
58  
61  
V
V
V
V
V
V
V
V
DACM0  
DACM1  
DACM2  
DACM3  
DACM4  
DACM5  
DACM6  
DACM7  
NONVOLATILE MEMORY  
EEPROM  
SCL 28  
SDA 27  
PMBus  
INTERFACE  
ALERTB 29  
ASEL0 32  
ASEL1 33  
2
(400kHz I C  
RAM  
COMPATIBLE)  
ADC_RESULTS  
MONITOR LIMITS  
SERVO TARGETS  
WP 19  
4
5
6
7
V
V
V
V
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUTPUT  
CONFIG  
CONTROL0 30  
CONTROL1 31  
WDI/RESETB 22  
FAULTB00 23  
FAULTB01 24  
FAULTB10 25  
FAULTB11 26  
CLOCK  
GENERATION  
OSCILLATOR  
CONTROLLER  
PMBus ALGORITHM  
FAULT PROCESSOR  
WATCHDOG  
12  
V
IN_EN  
V
DD  
8
9
V
V
V
V
OUT_EN4  
OUT_EN5  
OUT_EN6  
OUT_EN7  
SEQUENCER  
UVLO  
OPEN-DRAIN  
OUTPUT  
10  
11  
PWRGD  
20  
SHARE_CLK 21  
2978 BD  
2978fc  
16  
LTC2978  
OPERATION  
OPERATION OVERVIEW  
n
n
Restore EEPROM contents through PMBus program-  
ming or when V  
is applied on power-up.  
DD33  
The LTC2978 is a PMBus programmable power supply  
controller, monitor, sequencer and voltage supervisor that  
can perform the following operations:  
Report the DC/DC converter output voltage status  
through the PMBus interface and the power good  
output.  
n
Accept PMBus compatible programming commands.  
n
n
Generate interrupt requests by asserting the ALERTB  
pin in response to supported PMBus faults and  
warnings.  
n
Provide DC/DC converter input voltage and output volt-  
age/current read back through the PMBus interface.  
n
Control the output of DC/DC converters that set the  
Coordinate system wide fault responses for all DC/DC  
converters connected to the FAULTBz± and FAULTBz1  
pins.  
output voltage with a trim pin or DC/DC converters  
that set the output voltage using an external resistor  
feedback network.  
n
n
n
Synchronizesequencingdelaysorshutdownformultiple  
devices using the SHARE_CLK pin.  
n
Sequence the start-up of DC/DC converters via PMBus  
programming and the CONTROL input pins.  
Software and hardware write protect the command  
registers.  
n
Trim the DC/DC converter output voltage (typically in  
±.25 steps), in closed-loop servo operating mode,  
through PMBus programming.  
Disable the input voltage to the supervised DC/DC  
converters in response to output voltage OV and UV  
faults.  
n
Margin the DC/DC converter output voltage to PMBus  
programmed limits.  
n
n
Log telemetry and status data to EEPROM in response  
to a faulted-off condition  
n
Allow the user to trim or margin the DC/DC converter  
outputvoltageinamanualoperatingmodebyproviding  
direct access to the margin DAC.  
Supervise an external microcontroller’s activity for a  
stalled condition with a programmable watchdog timer  
and reset it if necessary.  
n
Supervise the DC/DC converter output voltage, input  
voltage, and the LTC2978 die temperature for over-  
value/undervalue conditions with respect to PMBus  
programmedlimitsandgenerateappropriatefaultsand  
warnings.  
n
Prevent a DC/DC converter from re-entering the ON  
state after a power cycle until a programmable interval  
(MFR_RESTART_DELAY) has elapsed and its output  
has decayed below a programmable threshold voltage  
(MFR_VOUT_DISCHARGE_THRESHOLD).  
n
Respond to a fault condition by either continuing op-  
eration indefinitely, latching off after a programmable  
deglitchperiodorlatchingoffimmediately.Aretrymode  
maybeusedtoautomaticallyrecoverfromalatched-off  
condition.  
n
Record minimum and maximum observed values of  
input voltage, output voltages and temperature.  
EEPROM  
n
Optionally stop trimming the DC/DC converter output  
The LTC2978 contains internal EEPROM (nonvolatile  
memory) to store configuration settings and fault log  
information. EEPROM endurance, retention, and mass  
write operation time are specified over the operating tem-  
peraturerange.SeeElectricalCharacteristicsandAbsolute  
Maximum Ratings sections.  
voltage after it reached the initial margin or nominal  
target. Optionally allow servo to resume if target drifts  
outside of V  
warning limits.  
OUT  
n
StorecommandregistercontentswithCRCtoEEPROM  
through PMBus programming.  
2978fc  
17  
LTC2978  
OPERATION  
Nondestructive operation above T = 8ꢀ°C is possible  
RESET  
J
although the Electrical Characteristics are not guaranteed  
and the EEPROM will be degraded.  
Holding the WDI/RESETB pin low for more than t  
RESETB  
will cause the LTC2978 to enter the power-on reset state.  
Followingthesubsequentrising-edgeoftheWDI/RESETB  
pin, the LTC2978 will execute its power-on sequence per  
the user configuration stored in EEPROM.  
Operating the EEPROM above 8ꢀ°C may result in a deg-  
radation of retention characteristics. The fault logging  
function, which is useful in debugging system problems  
that may occur at high temperatures, only writes to fault  
log EEPROM locations. If occasional writes to these reg-  
isters occur above 8ꢀ°C, a slight degradation in the data  
retention characteristics of the fault log may occur.  
WRITE-PROTECT PIN  
The WP pin allows the user to write-protect the LTC2978’s  
configuration registers. The WP pin is active high, and  
when asserted it provides Level 2 protection: all writes  
are disabled except to the WRITE_PROTECT, PAGE,  
STORE_USER_ALL, OPERATION, MFR_PAGE_FF_MASK  
and CLEAR_FAULTS commands. The most restrictive set-  
ting between theWP pin and WRITE_PROTECTcommand  
will override. For example if WP = 1 and WRITE_PROTECT  
= ±x8±, then the WRITE_PROTECT command overrides,  
since it is the most restrictive.  
It is recommended that the EEPROM not be written using  
STORE_USER_ALLorbulkprogrammingwhenT >8ꢀ°C.  
J
The degradation in EEPROM retention for temperatures  
>8ꢀ°C can be approximated by calculating the dimension-  
less acceleration factor using the following equation.  
Ea  
k
1
1
TUSE +273 TSTRESS +273  
AF = e  
Where:  
OTHER OPERATIONS  
Clock Sharing  
AF = acceleration factor  
Ea = activation energy = 1.4 eV  
Multiple LTC PMBus devices can synchronize their clocks  
in an application by connecting together the open-drain  
SHARE_CLK input/outputs to a pull-up resistor as a wired  
OR. In this case the fastest clock will take over and syn-  
chronize all LTC2978s.  
−ꢀ  
k = 8.62ꢀ×1± eV/°K  
T
T
= 8ꢀ°C specified junction temperature  
USE  
= actual junction temperature °C  
STRESS  
SHARE_CLKcanoptionallybeusedtosynchronizeON/OFF  
Example: Calculate the effect on retention when operating  
at a junction temperature of 9ꢀ°C for 1± hours.  
dependency on V across multiple chips by setting bit 3  
IN  
(Mfr_config_all_vin_share_enable)oftheMFR_CONFIG_  
ALL register. When configured this way the chip will hold  
SHARE_CLK low when the unit is off for insufficient input  
voltage and upon detecting that SHARE_CLK is held low  
the chip will disable all channels after a brief deglitch  
period. When the SHARE_CLK pin is allowed to rise, the  
chip will respond by beginning a soft-start requence. In  
this case the slowest VIN_ON detection will take over and  
synchronize other chips to its soft-start sequence.  
T
T
= 9ꢀ°C  
STRESS  
= 8ꢀ°C  
USE  
AF = 3.4  
Equivalent operating time at 8ꢀ°C = 34 hours.  
So the overall retention of the EEPROM was degraded by  
34 hours as a result of operation at a junction temperature  
of 9ꢀ°C for 1± hours. Note that the effect of this overstress  
is negligible when compared to the overall EEPROM  
retention rating of 87,6±± hours at a maximum junction  
temperature of 8ꢀ°C.  
2978fc  
18  
LTC2978  
OPERATION  
PMBus SERIAL DIGITAL INTERFACE  
The PMBus two wire interface is an incremental extension  
2
of the SMBus. SMBus is built upon I C with some minor  
TheLTC2978communicateswithahost(master)usingthe  
standard PMBus serial bus interface. The PMBus Timing  
Diagram shows the timing relationship of the signals on  
the bus. The two bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines.  
differences in timing, DC parameters and protocol. The  
2
SMBus protocols are more robust than simple I C byte  
commands because they provide timeouts to prevent  
bus hangs and optional packet error checking (PEC) to  
ensure data integrity. In general, a master device that  
2
can be configured for I C communication can be used  
TheLTC2978isaslavedevice.Themastercancommunicate  
with the LTC2978 using the following formats:  
for PMBus communication with little or no change to  
hardware or firmware.  
n
Master transmitter, slave receiver  
For a description of the minor extensions and exceptions  
PMBus makes to SMBus, refer to PMBus Specification  
Part 1 Revision 1.1: paragraph ꢀ: Transport. This can be  
found at:  
n
Master receiver, slave transmitter  
The following SMBus protocols are supported:  
n
Write Byte, Write Word, Send Byte  
www.pmbus.org.  
n
Read Byte, Read Word, Block Read  
For a description of the differences between SMBus and  
2
n
I C, refer to system management bus (SMBus) specifica-  
Alert Response Address  
tionversion2:AppendixB–DifferencesBetweenSMBus  
Figures 1-12 illustrate the aforementioned SMBus pro-  
tocols. All transactions support PEC (parity error check)  
and GCP (group command protocol). The Block Read  
supports 2ꢀꢀ bytes of returned data. For this reason, the  
PMBustimeoutmaybeextendedusingtheMfr_config_all_  
longer_pmbus_timeout setting.  
2
and I C. This can be found at:  
www.smbus.org.  
2
When using an I C controller to communicate with a  
PMBus part it is important that the controller be able to  
write a byte of data without generating a stop. This will  
allow the controller to properly form the repeated start  
of the PMBus read command by concatenating a start  
The LTC2978 will not acknowledge any PMBus command  
if it is still busy with a STORE_USER_ALL, RESTORE_  
USER_ALL, MFR_CONFIG_LTC2978 or if fault log data  
is being written to the EEPROM. Status_word_busy will  
also be set.  
2
command byte write with an I C read.  
PMBus  
PMBus is an industry standard that defines a means  
of communication with power conversion devices. It is  
comprised of an industry standard SMBus serial interface  
and the PMBus command language.  
2978fc  
19  
LTC2978  
OPERATION  
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
x
COMMAND CODE  
A
x
P
S
Sr  
START CONDITION  
REPEATED START CONDITION  
Rd READ (BIT VALUE OF 1)  
Wr WRITE (BIT VALUE OF 0)  
x
SHOWN UNDER A FIELD INDICATES THAT THE  
FIELD IS REQUIRED TO HAVE THE VALUE OF x  
A
ACKNOWLEDGE (THIS BIT POSITION MAY BE 0  
FOR AN ACK OR 1 FOR A NACK)  
P
STOP CONDITION  
PEC PACKET ERROR CODE  
MASTER TO SLAVE  
SLAVE TO MASTER  
CONTINUATION OF PROTOCOL  
...  
2978 F01a  
Figure 1a. PMBus Packet Protocol Diagram Element Key  
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE  
A
P
2978 F01b  
Figure 1b. Write Byte Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
2978 F02  
Figure 2. Write Word Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE  
A
PEC  
A
P
2978 F03  
Figure 3. Write Byte Protocol with PEC  
1
7
1
1
8
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
PEC  
A
P
2978 F04  
Figure 4. Write Word Protocol with PEC  
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
P
2978 F05  
Figure 5. Send Byte Protocol  
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
PEC  
A
P
2978 F06  
Figure 6. Send Byte Protocol with PEC  
2978fc  
20  
LTC2978  
OPERATION  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
S
SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
1 2978 F07  
Figure 7. Read Word Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
S
SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
PEC  
A
P
1 2978 F08  
Figure 8. Read Word Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
S
SLAVE ADDRESS Rd  
A
DATA BYTE  
A
P
1 2978 F09  
Figure 9. Read Byte Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
S
SLAVE ADDRESS Rd  
A
DATA BYTE  
A
PEC  
A
P
1
2978 F10  
Figure 10. Read Byte Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
...  
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr  
A
BYTE COUNT = N  
A
2978 F11  
SLAVE ADDRESS Rd  
...  
...  
8
1
8
1
8
1
A
1
1
DATA BYTE 1  
A
DATA BYTE 2  
A
DATA BYTE N  
P
Figure 11. Block Read  
1
7
1
1
8
1
1
7
1
1
8
1
...  
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr  
A
BYTE COUNT = N  
A
2978 F12  
SLAVE ADDRESS Rd  
...  
...  
8
1
8
1
8
1
8
1
A
1
1
DATA BYTE 1  
A
DATA BYTE 2  
A
A
P
DATA BYTE N  
PEC  
Figure 12. Block Read with PEC  
2978fc  
21  
LTC2978  
OPERATION  
Device Address  
changed unless the desired range of addresses overlap  
existingaddresses. Watchthattheaddressrangedoesnot  
2
The I C/SMBus address of the LTC2978 equals the base  
2
overlap with other I C/SMBus device or global addresses,  
address + N where N is a number from ± to 8. N can be  
2
including I C/SMBus multiplexers and bus buffers. This  
configuredbysettingtheASEL±andASEL1pinstoV  
,
DD33  
will bring you great happiness.  
GNDorFLOAT.SeeTable1.Usingonebaseaddressandthe  
ninevaluesofN,nineLTC2978scanbeconnectedtogether  
to control 72 outputs. The base address is stored in the  
MFR_I2C_BASE_ADDRESS register. The base address  
can be written to any value, but generally should not be  
TheLTC2978alwaysrespondstoitsglobaladdressandthe  
SMBus Alert Response address regardless of the state of  
itsASELpinsandtheMFR_I2C_BASE_ADDRESSregister.  
Table 1. LTC2978 Device Address Look-Up Table  
ADDRESS  
DESCRIPTION  
HEX DEVICE  
ADDRESS  
BINARY DEVICE ADDRESS BITS  
ADDRESS PINS  
7-Bit  
±C  
8-Bit  
19  
6
±
1
1
1
1
1
1
1
1
1
1
±
±
±
±
±
±
1
1
1
1
1
4
±
1
1
1
1
1
±
±
±
±
±
3
1
1
1
1
1
1
±
±
±
±
±
2
1
±
1
1
1
1
±
±
±
±
1
1
±
1
±
±
1
1
±
±
1
1
±
±
±
1
±
1
±
1
±
1
±
1
±
R/W  
1
ASEL1  
ASEL±  
Alert Response  
Global  
N = ±  
X
X
X
X
ꢀB  
ꢀC*  
ꢀD  
ꢀE  
ꢀF  
B6  
B8  
BA  
BC  
BE  
C±  
C2  
C4  
C6  
C8  
±
±
L
L
N = 1  
±
L
NC  
H
N = 2  
±
L
N = 3  
±
NC  
NC  
NC  
H
L
N = 4  
6±  
61  
62  
63  
64  
±
NC  
H
N = ꢀ  
±
N = 6  
±
L
N = 7  
±
H
NC  
H
N = 8  
±
H
H = Tie to V  
, NC = No Connect = Open or Float, L = Tie to GND, X = Don’t Care  
DD33  
*MFR_I2C_BASE_ADDRESS = 7bit ꢀC (Factory Default)  
2978fc  
22  
LTC2978  
OPERATION  
Processing Commands  
The LTC2978 uses a dedicated processing block to ensure quick response to all of its commands. There are a few  
exceptions where the part will NACK a subsequent command because it is still processing the previous command.  
These are summarized in the following tables.  
EEPROM Related Commands  
COMMAND  
TYPICAL DELAY*  
COMMENT  
STORE_USER_ALL  
Mass_write  
See Electrical Characterization table. The LTC2978 will not accept any commands while it is  
transferring register contents to the EEPROM. The command byte will be NACKed.  
RESTORE_USER_ALL  
MFR_DATA_LOG_CLEAR  
MFR_DATA_LOG_STORE  
Internal Fault log  
3±ms  
17ꢀms  
2±ms  
1±ms  
The LTC2978 will not accept any commands while it is transferring EEPROM data to command  
registers. The command byte will be NACKed.  
The LTC2978 will not accept any commands while it is initializing the fault log EEPROM space. The  
command byte will be NACKed.  
The LTC2978 will not accept any commands while it is transferring the fault log RAM buffer to  
EEPROM space. The command byte will be NACKed.  
An internal fault log event is a one time event that uploads the contents of the fault log to EEPROM in  
response to a fault. Internal fault logging may be disabled. Commands received during this EEPROM  
write are NACKed.  
MFR_DATA_LOG_  
RESTORE  
2ms  
The LTC2978 will not accept any commands while it is transferring EEPROM data to the fault log RAM  
buffer. The command byte will be NACKed.  
*The typical delay is measured from the command’s stop to the next command’s start.  
COMMAND  
TYPICAL DELAY*  
COMMENT  
MFR_CONFIG_LTC2978  
<ꢀ±µs  
The LTC2978 will not accept any commands while it is completing this command. The command byte  
will be NACKed.  
*The delay is measured from the command’s stop to the next command’s start.  
Other PMBus Timing Notes  
COMMAND  
COMMENT  
CLEAR_FAULTS  
The LTC2978 will accept commands while it is completing this command but the affected status flags will not be cleared for  
up to ꢀ±±µs.  
2978fc  
23  
LTC2978  
PMBus COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS  
NVM  
PAGE  
±x±± Channel or page currently selected for any R/W Byte  
command that supports paging.  
N
Y
Y
Reg  
Reg  
Reg  
±x±±  
±x±±  
±x12  
29  
3±  
31  
OPERATION  
±x±1 Operating mode control. On/Off, Margin  
High and Margin Low.  
R/W Byte  
R/W Byte  
Send Byte  
Y
Y
ON_OFF_CONFIG  
±x±2 CONTROL pin & PMBus bus on/off  
command setting.  
CLEAR_FAULTS  
±x±3 Clear any fault bits that have been set.  
Y
N
NA  
31  
32  
WRITE_PROTECT  
±x1± Level of protection provided by the device R/W Byte  
against accidental changes.  
Reg  
Y
±x±±  
STORE_USER_ALL  
RESTORE_USER_ALL  
CAPABILITY  
±x1ꢀ Store entire operating memory to  
EEPROM.  
Send Byte  
Send Byte  
R Byte  
N
N
N
NA  
NA  
32  
32  
32  
±x16 Restore entire operating memory from  
EEPROM.  
±x19 Summary of PMBus optional  
communication protocols supported by  
this device.  
Reg  
±xE±  
VOUT_MODE  
VOUT_COMMAND  
VOUT_MAX  
±x2± Output voltage data format and mantissa  
R Byte  
Y
Y
Y
Reg  
L16  
L16  
±x13  
33  
33  
33  
–13  
exponent. (2  
)
±x21 Servo Target. Nominal DC/DC converter  
output voltage setpoint.  
R/W Word  
V
V
Y
Y
1.±  
±x2±±±  
±x24 Upper limit on the output voltage the unit R/W Word  
can command regardless of any other  
commands.  
4.±  
±x8±±±  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
VIN_ON  
±x2ꢀ Margin high DC/DC converter output  
voltage setting.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
Y
Y
N
N
L16  
L16  
L11  
L11  
V
V
V
V
Y
Y
Y
Y
1.±ꢀ  
33  
33  
33  
33  
±x219A  
±x26 Margin low DC/DC converter output  
voltage setting.  
±.9ꢀ  
±x1E66  
±x3ꢀ Input voltage above which power  
conversion can be enabled.  
1±.±  
±xD28±  
VIN_OFF  
±x36 Input voltage below which power  
9.±  
±xD24±  
conversion is disabled. All V  
go off immediately.  
pins  
OUT_EN  
VOUT_OV_FAULT_LIMIT  
±x4± Output overvoltage fault limit  
R/W Word  
R/W Byte  
R/W Word  
R/W Word  
R/W Word  
Y
Y
Y
Y
Y
L16  
Reg  
L16  
L16  
L16  
V
Y
Y
Y
Y
Y
1.1  
33  
3ꢀ  
33  
33  
33  
±x2333  
VOUT_OV_FAULT_  
RESPONSE  
±x41 Action to be taken by the device when an  
output overvoltage fault is detected.  
±x8±  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
±x42 Output overvoltage warning limit .  
V
V
V
1.±7ꢀ  
±x2266  
±x43 Output undervoltage warning limit  
±.92ꢀ  
±x1D9A  
±x44 Output undervoltage fault limit. Limit  
used to determine if TON_MAX_FAULT  
has been met and the unit is on.  
±.9  
±x1CCD  
VOUT_UV_FAULT_  
RESPONSE  
±x4ꢀ Action to be taken by the device when an  
output undervoltage fault is detected.  
R/W Byte  
Y
N
Reg  
L11  
Y
Y
±x7F  
3ꢀ  
34  
OT_FAULT_LIMIT  
±x4F Overtemperature fault limit setting.  
R/W Word  
°C  
8ꢀ.±  
±xEAA8  
2978fc  
24  
LTC2978  
PMBus COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS  
NVM  
OT_FAULT_RESPONSE  
±xꢀ± Action to be taken by the device when an  
overtemperature fault is detected.  
R/W Byte  
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Reg  
L11  
L11  
L11  
Reg  
L11  
Reg  
L11  
L11  
L11  
Reg  
L16  
L16  
L11  
Y
±xB8  
36  
34  
34  
34  
36  
33  
36  
33  
33  
33  
36  
33  
33  
34  
OT_WARN_LIMIT  
±xꢀ1 Overtemperature warning limit setting.  
±xꢀ2 Undertemperature warning limit.  
±xꢀ3 Undertemperature fault limit.  
R/W Word  
R/W Word  
R/W Word  
R/W Byte  
°C  
°C  
°C  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
7ꢀ.±  
±xEAꢀ8  
UT_WARN_LIMIT  
±
±x8±±±  
UT_FAULT_LIMIT  
–ꢀ.±  
±xCD8±  
UT_FAULT_RESPONSE  
VIN_OV_FAULT_LIMIT  
±xꢀ4 Action to be taken by the device when an  
undertemperature fault is detected.  
±xB8  
±xꢀꢀ Input overvoltage fault limit measured at R/W Word  
pin  
V
1ꢀ.±  
±xD3C±  
V
IN_SNS  
VIN_OV_FAULT_RESPONSE ±xꢀ6 Action to be taken by the device when an  
input overvoltage fault is detected.  
R/W Byte  
±x8±  
VIN_OV_WARN_LIMIT  
VIN_UV_WARN_LIMIT  
VIN_UV_FAULT_LIMIT  
±xꢀ7 Input overvoltage warning limit measured R/W Word  
at V pin  
V
V
V
14.±  
±xD38±  
IN_SNS  
±xꢀ8 Input undervoltage warning limit  
measured at V pin.  
R/W Word  
±
±x8±±±  
IN_SNS  
±xꢀ9 Input undervoltage fault limit measured at R/W Word  
pin  
±
V
±x8±±±  
IN_SNS  
VIN_UV_FAULT_RESPONSE ±xꢀA Action to be taken by the device when an  
input undervoltage fault is detected.  
R/W Byte  
±x±±  
POWER_GOOD_ON  
POWER_GOOD_OFF  
TON_DELAY  
±xꢀE Output voltage at or above which a power R/W Word  
V
V
±.96  
±x1EB8  
good should be asserted.  
±xꢀF Output voltage at or below which a power R/W Word  
good should be deasserted.  
±.94  
±x1E14  
±x6± Time from CONTROL pin and/or  
OPERATION command = ON to V  
pin = ON.  
R/W Word  
ms  
1.±  
±xBA±±  
OUT_EN  
TON_RISE  
±x61 Time from when the output starts to rise  
until the LTC2978 optionally soft-connects  
its DAC and begins to servo the output  
voltage to the desired value.  
R/W Word  
Y
Y
L11  
L11  
ms  
ms  
Y
Y
1±.±  
34  
34  
±xD28±  
TON_MAX_FAULT_LIMIT  
±x62 Maximum time from V  
= ON  
R/W Word  
1ꢀ.±  
±xD3C±  
OUT_EN  
assertion that an UV condition will be  
tolerated before a TON_MAX_FAULT  
condition results.  
TON_MAX_FAULT_  
RESPONSE  
±x63 Action to be taken by the device when a  
TON_MAX_FAULT event is detected.  
R/W Byte  
Y
Y
Reg  
L11  
Y
Y
±xB8  
36  
34  
TOFF_DELAY  
±x64 Time from CONTROL pin and/or  
R/W Word  
ms  
1.±  
±xBA±±  
OPERATION command = OFF to V  
pin = OFF.  
OUT_EN  
STATUS_BYTE  
STATUS_WORD  
STATUS_VOUT  
±x78 One byte summary of the unit's fault  
condition.  
R Byte  
R Word  
R Byte  
Y
Y
Y
Reg  
Reg  
Reg  
NA  
NA  
NA  
37  
38  
38  
±x79 Two byte summary of the unit's fault  
condition.  
±x7A Output voltage fault and warning status.  
2978fc  
25  
LTC2978  
PMBus COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS  
NVM  
STATUS_INPUT  
±x7C Input voltage fault and warning status  
measured at VIN_SNS pin.  
R Byte  
N
N
N
Y
Reg  
Reg  
Reg  
Reg  
NA  
NA  
NA  
NA  
39  
39  
4±  
4±  
STATUS_TEMPERATURE  
STATUS_CML  
±x7D Temperature fault and warning status for  
READ_TEMPERATURE_1.  
R Byte  
R Byte  
R Byte  
±x7E Communication and memory fault and  
warning status.  
STATUS_MFR_SPECIFIC  
±x8± Manufacturer specific fault and state  
information.  
READ_VIN  
±x88 Input voltage measured at VIN_SNS pin..  
±x8B DC/DC converter output voltage.  
±x8D Internal junction temperature.  
R Word  
R Word  
R Word  
R Byte  
N
Y
N
N
L11  
L16  
L11  
Reg  
V
V
NA  
NA  
41  
41  
41  
41  
READ_VOUT  
READ_TEMPERATURE_1  
PMBUS_REVISION  
°C  
NA  
±x98 PMBus revision supported by this device.  
Current revision is 1.1.  
±x11  
MFR_CONFIG_LTC2978  
±xD± Configuration bits that are channel  
specific.  
R/W Word  
Y
N
Y
Reg  
Reg  
Reg  
Y
Y
Y
±x±±8±  
±x7B  
42  
43  
44  
MFR_CONFIG_ALL_  
LTC2978  
±xD1 Configuration bits that are common to all R/W Byte  
pages.  
MFR_FAULTBz±_  
PROPAGATE  
±xD2 Configuration that determines if a  
channel’s faulted off state is propagated  
to the FAULTB±± and FAULTB1± pins.  
R/W Byte  
±x±±  
MFR_FAULTBz1_  
PROPAGATE  
±xD3 Manufacturer configuration that  
Configuration that determines if a  
R/W Byte  
Y
Reg  
Y
±x±±  
44  
channel’s faulted off state is propagated  
to the FAULTB±1 and FAULTB11 pins.  
MFR_PWRGD_EN  
±xD4 Configuration for mapping PWRGD and  
WDI/RESETB status to the PWRGD pin.  
R/W Word  
N
N
N
N
N
N
N
N
N
Y
N
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
L11  
L11  
L16  
L11  
Y
Y
Y
Y
Y
Y
Y
Y
Y
±x±±±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
4ꢀ  
46  
46  
46  
46  
47  
48  
48  
49  
49  
49  
MFR_FAULTB±±_  
RESPONSE  
±xDꢀ Action to be taken by the device when the R/W Byte  
FAULTB±± pin is asserted low.  
MFR_FAULTB±1_  
RESPONSE  
±xD6 Action to be taken by the device when the R/W Byte  
FAULTB±1 pin is asserted low.  
MFR_FAULTB1±_  
RESPONSE  
±xD7 Action to be taken by the device when the R/W Byte  
FAULTB1± pin is asserted low.  
MFR_FAULTB11_  
RESPONSE  
±xD8 Action to be taken by the device when the R/W Byte  
FAULTB11 pin is asserted low.  
MFR_VINEN_OV_FAULT_  
RESPONSE  
±xD9 Action to be taken by the V  
pin in  
R/W Byte  
R/W Byte  
R/W Word  
R/W Word  
R Word  
IN_EN  
response to a VOUT_OV_FAULT  
MFR_VINEN_UV_FAULT_  
RESPONSE  
±xDA Action to be taken by the V  
pin in  
IN_EN  
response to a VOUT_UV_FAULT  
MFR_RETRY_DELAY  
MFR_RESTART_DELAY  
MFR_VOUT_PEAK  
MFR_VIN_PEAK  
±xDB Retry interval during FAULT retry mode.  
ms  
ms  
V
2±±.±  
±xF32±  
±xDC Delay from actual CONTROL active edge  
to virtual CONTROL active edge.  
4±±.±  
±xFB2±  
±xDD Maximum measured value of READ_  
VOUT.  
NA  
±xDE Maximum measured value of READ_VIN.  
R Word  
V
NA  
2978fc  
26  
LTC2978  
PMBus COMMAND SUMMARY  
Summary Table  
DEFAULT  
VALUE  
FLOAT  
HEX  
CMD  
DATA  
REF  
PAGE  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS  
NVM  
MFR_TEMPERATURE_  
PEAK  
±xDF Maximum measured value of READ_  
TEMPERATURE_1.  
R Word  
N
Y
N
N
N
N
L11  
U16  
L11  
L11  
L11  
Reg  
°C  
NA  
49  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ±  
ꢀ1  
MFR_DAC  
±xE± Manufacturer register that contains the  
code of the 1±-bit DAC.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
R/W Byte  
Y
Y
Y
Y
Y
±x±±±±  
MFR_POWERGOOD_  
ASSERTION_DELAY  
±xE1 Power good output assertion delay.  
ms  
ms  
ms  
1±±.±  
±xEB2±  
MFR_WATCHDOG_T_FIRST ±xE2 First watchdog timer interval.  
±
±x8±±±  
MFR_WATCHDOG_T  
MFR_PAGE_FF_MASK  
±xE3 Watchdog timer interval.  
±
±x8±±±  
±xE4 Configuration defining which channels  
respond to global page commands  
(PAGE=±xFF).  
±xFF  
MFR_PADS  
±xEꢀ Current state of selected digital I/O pads.  
R Word  
N
N
Reg  
U16  
N/A  
ꢀ2  
ꢀ2  
2
MFR_I2C_BASE_ADDRESS ±xE6 Base value of the I C/SMBus address  
byte.  
R/W Byte  
Y
Y
Y
±xꢀC  
MFR_SPECIAL_ID  
±xE7 Manufacturer code for identifying the  
LTC2978  
R Word  
R Byte  
N
Y
Reg  
Reg  
±x±121  
ꢀ2  
ꢀ3  
MFR_SPECIAL_LOT  
±xE8 Customer dependent codes that  
identify the factory programmed user  
configuration stored in EEPROM. Contact  
factory for default value.  
MFR_VOUT_DISCHARGE_  
THRESHOLD  
±xE9 Coefficient used to multiply VOUT_  
R/W Word  
Y
N
N
N
L11  
Y
2.±  
ꢀ3  
ꢀꢀ  
ꢀꢀ  
ꢀꢀ  
COMMAND in order to determine V  
threshold voltage.  
off  
±xC2±±  
OUT  
MFR_FAULT_LOG_STORE  
±xEA Command a transfer of the fault log from Send Byte  
RAM to EEPROM. This causes the part to  
NA  
NA  
NA  
behave as if a channel has faulted off.  
MFR_FAULT_LOG_  
RESTORE  
±xEB Command a transfer of the fault log  
previously stored in EEPROM back to  
RAM.  
Send Byte  
Send Byte  
MFR_FAULT_LOG_CLEAR  
±xEC Initialize the EEPROM block reserved for  
fault logging and clear any previous fault  
logging locks.  
MFR_FAULT_LOG_STATUS ±xED Fault logging status.  
R Byte  
N
N
Reg  
Reg  
Y
Y
NA  
NA  
ꢀꢀ  
ꢀ6  
MFR_FAULT_LOG  
±xEE Fault log data bytes. This sequentially  
R Block  
retrieved data is used to assemble a  
complete fault log. 2ꢀ6 Bytes.  
MFR_COMMON  
±xEF Manufacturer status bits that are common  
across multiple LTC chips.  
R Byte  
N
Reg  
NA  
ꢀ3  
MFR_SPARE_±  
MFR_SPARE_2  
MFR_VOUT_MIN  
MFR_VIN_MIN  
±xF7 Scratchpad register  
R/W Word  
R/W Word  
N
Y
Y
N
N
Reg  
Reg  
L16  
L11  
L11  
Y
Y
±x±±±±  
±x±±±±  
NA  
ꢀ3  
ꢀ3  
ꢀ4  
ꢀ4  
ꢀ4  
±xF9 Paged scratchpad register  
±xFB Minimum measured value of READ_VOUT. R Word  
V
V
±xFC Minimum measured value of READ_VIN.  
R Word  
R Word  
NA  
MFR_TEMPERATURE_MIN ±xFD Minimum measured value of READ_  
TEMPERATURE_1.  
°C  
NA  
2978fc  
27  
LTC2978  
PMBus COMMAND SUMMARY  
Data Formats  
L11  
Linear_ꢀs_11s  
PMBus data field b[1ꢀ:±]  
N
Valueꢀ=ꢀYꢀ•ꢀ2  
where N = b[1ꢀ:11] is a ꢀ-bit two’s complement integer and Y = b[1±:±] is an 11-bit two’s complement integer  
Example:  
READ_VIN = 1±V  
For b[1ꢀ:±] = ±xD28± = 11±1_±±1±_1±±±_±±±±b  
–6  
Valueꢀ=ꢀ640ꢀ•ꢀ2 = 1±  
See PMBus Spec Part II: Paragraph 7.1  
L16  
Linear_16u  
PMBus data field b[1ꢀ:±]  
N
Valueꢀ=ꢀYꢀ•ꢀ2 where Y = b[1ꢀ:±] is an unsigned integer and N = Vout_mode_parameter is a ꢀ-bit two’s complement  
exponent that is hardwired to –13 decimal.  
Example:  
VOUT_COMMAND = 4.7ꢀV  
For b[1ꢀ:±] = ±x98±± = 1±±1_1±±±_±±±±_±±±±b  
–13  
Valueꢀ=ꢀ38912ꢀ•ꢀ2 = 4.7ꢀ  
See PMBus Spec Part II: Paragraph 8.3.1  
Reg  
U16  
Register  
PMBus data field b[1ꢀ:±] or b[7:±].  
Bit field meaning is defined in detailed PMBus Command Register Description.  
Integer Word  
PMBus data field b[1ꢀ:±]  
Value = Y where Y = b[1ꢀ:±] is a 16-bit unsigned integer  
Example:  
For b[1ꢀ:±] = ±x98±7 = 1±±1_1±±±_±±±±_±111b  
Value = 38919  
CF  
Custom Format  
PMBus data field b[1ꢀ:±]  
Value is defined in detailed PMBus Command Register Description. This is often an unsigned or two’s complement  
integer scaled by an MFR specific constant.  
2978fc  
28  
LTC2978  
PMBus COMMAND DESCRIPTION  
OPERATION, MODE AND EEPROM COMMANDS  
PAGE  
The LTC2978 has eight pages that correspond to the eight DC/DC converter channels that can be managed. Each DC/DC  
converter channel can be uniquely programmed by first setting the appropriate page.  
The PAGE command provides the ability to configure, control and monitor multiple outputs on one unit.  
Setting PAGE = ±xFF allows a simultaneous write to all pages for PMBus commands that support global page program-  
ming. The only commands that support PAGE = ±xFF are OPERATION and ON_OFF_CONFIG. See MFR_PAGE_FF_MASK  
for additional options. Reading any paged PMBus register with PAGE = ±xFF returns unpredictable data and will trigger  
a CML fault.  
PAGE Data Contents  
BIT(S) SYMBOL PURPOSE  
b[7:±] Page Page operation.  
±x±±: All PMBus commands address channel/page ±.  
±x±1: All PMBus commands address channel/page 1.  
±x±7: All PMBus commands address channel/page 7.  
±xXX: All nonspecified values reserved.  
±xFF: A single PMBus write/send to commands that support this mode will simultaneously address all channels/pages with  
MFR_PAGE_FF_MASK enabled.  
2978fc  
29  
LTC2978  
PMBus COMMAND DESCRIPTION  
OPERATION  
The OPERATION command is used to turn the unit on and off in conjunction with the CONTROLn pin and ON_OFF_CON-  
FIG. This command register responds to the global page command (PAGE=±xFF). The contents and functions of the  
data byte are shown in the following tables.  
OPERATION Data Contents (On_off_config_use_pmbus=1)  
SYMBOL  
BITS  
Action  
Operation_control[1:±] Operation_margin[1:±]  
Operation_fault[1:±]  
Reserved (read only)  
b[7:6]  
±±  
b[ꢀ:4]  
XX  
b[3:2]  
XX  
b[1:±]  
±±  
Turn off immediately  
Turn on  
1±  
±±  
XX  
±±  
Margin Low (Ignore Faults and  
Warnings)  
1±  
±1  
±1  
±±  
Margin Low  
1±  
1±  
±1  
1±  
1±  
±1  
±±  
±±  
Margin High (Ignore Faults and  
Warnings  
Margin High  
1±  
±1  
1±  
±±  
1±  
±±  
±±  
FUNCTION  
Sequence off and margin to  
nominal  
XX  
Sequence off and Margin Low  
(Ignore Faults and Warnings)  
±1  
±1  
±1  
±±  
Sequence off and Margin Low  
±1  
±1  
±1  
1±  
1±  
±1  
±±  
±±  
Sequence off and Margin High  
(Ignore Faults and Warnings)  
Sequence off and Margin High  
Reserved  
±1  
1±  
1±  
±±  
All remaining combinations  
OPERATION Data Contents (On_off_config_use_pmbus=0)  
SYMBOL  
BITS  
Action  
Operation_control[1:±] Operation_margin[1:±]  
Operation_fault[1:±]  
Reserved (read only)  
b[7:6]  
b[ꢀ:4]  
±±  
b[3:2]  
XX  
b[1:±]  
±±  
Output at Nominal  
±±, ±1 or 1±  
±±, ±1 or 1±  
Margin Low (Ignore faults and  
Warnings)  
±1  
±1  
±±  
Margin Low  
±±, ±1 or 1±  
±±, ±1 or 1±  
±1  
1±  
1±  
±1  
±±  
±±  
FUNCTION  
Margin High (Ignore Faults and  
Warnings  
Margin High  
Reserved  
±±, ±1 or 1±  
1±  
1±  
±±  
All remaining combinations  
2978fc  
30  
LTC2978  
PMBus COMMAND DESCRIPTION  
ON_OFF_CONFIG  
The ON_OFF_CONFIG command configures the combination of CONTROLn pin input and PMBus bus commands  
needed to turn the LTC2978 on/off, including the power-on behavior, as shown in the following table. This command  
register responds to the global page command (PAGE=±xFF). After the part has initialized, an additional comparator  
monitors VIN_SNS. The VIN_ON threshold must be exceeded before the output power sequencing can begin. After  
V is initially applied, the part will typically require 13ꢀms to initialize and begin the TON_DELAY timer. The readback  
IN  
of voltages and currents may require an additional 16±ms.  
ON_OFF_CONFIG Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7:ꢀ]  
b[4]  
Reserved  
Don’t care. Always returns ±.  
Controls default autonomous power-up operation.  
On_off_config_controlled_on  
±: Unit powers up regardless of the CONTROLn pin or OPERATION value. Unit always powers up with  
sequencing. To turn unit on without sequencing, set TON_DELAY = ±.  
1: Unit does not power up unless commanded by the CONTROLn pin and/or the OPERATION command  
on the serial bus. If On_off_config[3:2] = ±±, the unit never powers up.  
b[3]  
b[2]  
On_off_config_use_pmbus  
On_off_config_use_control  
Reserved  
Controls how the unit responds to commands received via the serial bus.  
±: Unit ignores the Operation_control[1:±] bits.  
1: Unit responds to Operation_control[1:±]. Depending on On_off_config_use_control, the unit may also  
require the CONTROLn pin to be asserted for the unit to start.  
Controls how unit responds to the CONTROLn pin.  
±: Unit ignores the CONTROLn pin.  
1: Unit requires the CONTROLn pin to be asserted to start the unit. Depending on On_off_config_use_  
pmbus the OPERATION command may also be required to instruct the device to start.  
b[1]  
b[±]  
Not supported. Always returns 1.  
On_off_config_control_fast_off CONTROLn pin turn off action when commanding the unit to turn off  
±: Use the programmed TOFF_DELAY.  
1: Turn off the output and stop transferring energy as quickly as possible, i.e. pull V  
low  
OUTENn  
immediately.  
CLEAR_FAULTS  
The CLEAR_FAULTS command is used to clear any status faults that have been set. This command clears all bits in all  
unpaged status registers, and the paged status registers selected by the current PAGE setting. At the same time, the  
device negates (clears, releases) its contribution to ALERTB.  
The CLEAR_FAULTS command does not cause a unit that has latched off for a fault condition to restart. See Clearing  
Latched Faults for more information.  
If the fault condition is present after the fault status is cleared, the fault status bit shall be set again and the host noti-  
fied by the usual means.  
Note: this command register does not respond to the global page command (PAGE=±xFF).  
2978fc  
31  
LTC2978  
PMBus COMMAND DESCRIPTION  
WRITE_PROTECT  
The WRITE_PROTECT command provides protection against accidental programming of the LTC2978 command reg-  
isters. All supported commands may have their parameters read, regardless of the WRITE_PROTECT setting.  
There are two levels of write protection:  
•ꢀ Levelꢀ1:ꢀNothingꢀcanꢀbeꢀchangedꢀexceptꢀtheꢀlevelꢀofꢀwriteꢀprotectionꢀitself.ꢀValuesꢀcanꢀbeꢀreadꢀfromꢀallꢀpages.ꢀThisꢀ  
setting can be stored to EEPROM.  
•ꢀ Levelꢀ2:ꢀNothingꢀcanꢀbeꢀchangedꢀexceptꢀforꢀtheꢀlevelꢀofꢀprotection,ꢀchannelꢀon/offꢀstateꢀandꢀclearingꢀofꢀfaults.ꢀValuesꢀ  
can be read from all pages. This setting can be stored to EEPROM.  
WRITE_PROTECT Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7:±] Write_protect[7:±] Level 1: 1±±±_±±±±b: Disable all writes except to the WRITE_PROTECT, PAGE, and STORE_USER_ALL commands.  
Level 2: ±1±±_±±±±b: Disable all writes except to the WRITE_PROTECT, PAGE, STORE_USER_ALL, OPERATION, MFR_  
PAGE_FF_MASK, and CLEAR_FAULTS.  
±±±±_±±±±b: Enable writes to all commands.  
xxxx_xxxxb: All other values reserved.  
STORE_USER_ALL and RESTORE_USER_ALL  
STORE_USER_ALL, RESTORE_USER_ALL commands provide access to User EEPROM space. Once a command is  
stored in User EEPROM, it will be restored with an explicit restore command or when the part emerges from power-  
2
on reset after power is applied. While either of these commands is being processed, the device will NACK I C writes.  
STORE_USER_ALL.IssuingthiscommandwillstorealloperatingmemorycommandswithacorrespondingEEPROM  
memory location. It is recommended that this command not be executed while a unit is enabled since all monitoring  
is suspended while the operating memory is transferred to EEPROM.  
RESTORE_USER_ALL. Issuing this command will restore all commands from EEPROM Memory. It is recommended  
that this command not be executed while a unit is enabled since all monitoring is suspended while the EEPROM is  
transferred to operating memory, and intermediate values from EEPROM may not be compatible with the values initially  
stored in operating memory.  
CAPABILITY  
The CAPABILITY command provides a way for a host system to determine some key capabilities of the LTC2978. This  
one byte command is read only.  
CAPABILITY Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7]  
Capability_pec  
Hard coded to 1 indicating Packet Error Checking is supported. Reading the Mfr_config_all_pec_en bit will indicate  
whether PEC is currently required.  
b[6]  
b[ꢀ]  
Capability_scl_max  
Hard coded to 1 indicating the maximum supported bus speed is 4±±kHz.  
Capability_smb_alert Hard coded to 1 indicating this device does have an ALERTB pin and does support the SMBus Alert Response  
Protocol.  
b[4:±] Reserved  
Always returns ±.  
2978fc  
32  
LTC2978  
PMBus COMMAND DESCRIPTION  
VOUT_MODE  
This command is read only and specifies the mode and exponent for all commands with a L16 data format. See Data  
Formats table on page 28.  
VOUT_MODE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:ꢀ] Vout_mode_type  
Reports linear mode. Hard wired to ±±±b.  
b[4:±] Vout_mode_parameter Linear mode exponent. ꢀ-bit two’s complement integer. Hardwired to ±x13 (–13 decimal).  
OUTPUT VOLTAGE RELATED COMMANDS  
VOUT_COMMAND, VOUT_MAX, VOUT_MARGIN_HIGH, VOUT_MARGIN_LOW, VOUT_OV_FAULT_LIMIT, VOUT_OV_  
WARN_LIMIT, VOUT_UV_WARN_LIMIT, VOUT_UV_FAULT_LIMIT, POWER_GOOD_ON and POWER_GOOD_OFF  
These commands all use the same format and provide various servo, margining, and supervising limits for a chan-  
nel’s output voltage. When odd channels are configured to measure current, the OV_WARN_LIMIT, UV_WARN_LIMIT,  
OV_FAULT_LIMIT and UV_FAULT_LIMIT commands are not supported.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Vout_command[1ꢀ:±],  
Vout_max[1ꢀ:±],  
These commands relate to output voltage. The data uses the L16 format.  
Units: V  
Vout_margin_high[1ꢀ:±],  
Vout_margin_low[1ꢀ:±],  
Vout_ov_fault_limit[1ꢀ:±],  
Vout_ov_warn_limit[1ꢀ:±],  
Vout_uv_warn_limit[1ꢀ:±],  
Vout_uv_fault_limit[1ꢀ:±],  
Power_good_on[1ꢀ:±],  
Power_good_off[1ꢀ:±]  
INPUT VOLTAGE RELATED COMMANDS  
VIN_ON, VIN_OFF, VIN_OV_FAULT_LIMIT, VIN_OV_WARN_LIMIT, VIN_UV_WARN_LIMIT and VIN_UV_FAULT_  
LIMIT  
These commands use the same format and provide voltage supervising limits for V .  
IN  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Vin_on[1ꢀ:±],  
Vin_off[1ꢀ:±],  
These commands relate to input voltage. The data uses the L11 format.  
Units: V.  
Vin_ov_fault_limit[1ꢀ:±],  
Vin_ov_warn_limit[1ꢀ:±],  
Vin_uv_warn_limit[1ꢀ:±],  
Vin_uv_fault_limit[1ꢀ:±]  
2978fc  
33  
LTC2978  
PMBus COMMAND DESCRIPTION  
TEMPERATURE RELATED COMMANDS  
OT_FAULT_LIMIT, OT_WARN_LIMIT, UT_WARN_LIMIT and UT_FAULT_LIMIT  
These commands provide supervising limits for temperature.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Ot_fault_limit[1ꢀ:±], The data uses the L11 format.  
Ot_warn_limit[1ꢀ:±], Units: °C.  
Ut_warn_limit[1ꢀ:±],  
Ut_fault_limit[1ꢀ:±]  
TIMER LIMITS  
TON_DELAY, TON_RISE, TON_MAX_FAULT_LIMIT and TOFF_DELAY  
These commands share the same format and provide sequencing and timer fault and warning delays in ms.  
TON_DELAY is the amount time in ms that elapses after the channel has been allowed on (usually due to CONTROLn  
pin or OPERATION command) until the channel enables the power supply. This delay is counted using SHARE_CLK  
only.  
TON_RISE is the amount of time in ms that elapses after the power supply has been enabled until the LTC2978’s DAC  
soft connects and servos the output voltage to the desired level if Mfr_dac_mode = ±±b. This delay is counted using  
SHARE_CLK only.  
TON_MAX_FAULT_LIMIT is the maximum amount of time that the power supply being controlled by the LTC2978 can  
attempt to power up the output without reaching the VOUT_UV_FAULT_LIMIT. If the output reaches VOUT_UV_FAULT_  
LIMIT prior to TON_MAX_FAULT_LIMIT, the LTC2978 unmasks the VOUT_UV_FAULT_LIMIT threshold. If it does not,  
then a TON_MAX_FAULT is declared. (Note that a value of zero means there is no limit to how long the power supply  
can attempt to bring up its output voltage.) This delay is counted using SHARE_CLK only.  
TOFF_DELAY is the amount of time that elapses after the CONTROLn pin and/or OPERATION command is deasserted  
until the channel is disabled (soft-off). This delay is counted using SHARE_CLK if available, otherwise the internal  
oscillator is used.  
Data Contents  
BIT(S) SYMBOL  
b[1ꢀ:±] Ton_delay[1ꢀ:±],  
Ton_rise[1ꢀ:±],  
OPERATION  
The data uses the L11 format.  
The internal timers operate on a 1±µs internal clock. The SHARE_CLK pin may be used to synchronize the  
1±µs timer.  
Ton_max_fault_limit[1ꢀ:±],  
Toff_delay[1ꢀ:±],  
Delays are rounded to the nearest 1±µs  
Units: ms. Max value: 6ꢀꢀms  
2978fc  
34  
LTC2978  
PMBus COMMAND DESCRIPTION  
FAULT RESPONSE FOR VOLTAGES MEASURED BY THE HIGH SPEED SUPERVISOR  
VOUT_OV_FAULT_RESPONSE and VOUT_UV_FAULT_RESPONSE  
The fault response documented here is for voltages that are measured by the high speed supervisor. These voltages  
are measured over a short period of time and may require a deglitch period. Note that in addition to the response  
described by these commands, the LTC2978 will also:  
•ꢀ Setꢀtheꢀappropriateꢀbit(s)ꢀinꢀtheꢀSTATUS_BYTE  
•ꢀ Setꢀtheꢀappropriateꢀbit(s)ꢀinꢀtheꢀSTATUS_WORD  
•ꢀ Set the appropriate bit in the corresponding STATUS_VOUT register, and  
•ꢀ NotifyꢀtheꢀhostꢀbyꢀpullingꢀtheꢀALERTBꢀpinꢀlow.ꢀ  
Note: Odd numbered channels configured for high resolution ADC measurements (for current measurement) will not  
respond to OV/UV faults or warnings.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:6] Vout_ov_fault_response_action, Response action:  
Vout_uv_fault_response_action ±±b: The unit continues operation without interruption.  
±1b: The unit continues operating for the delay time specified by bits[2:±] in increments of ts_vs. (See  
Electrical Characteristics Table, Voltage Supervisor Characteristics section).  
If the fault is still present at the end of the delay time, the unit shuts down and responds as programmed in  
the retry setting (bits [ꢀ:3]).  
1Xb: The device shuts down and responds according to the retry setting in bits [ꢀ:3].  
Response retry behavior:  
b[ꢀ:3] Vout_ov_fault_response_retry,  
Vout_uv_fault_response_retry  
±±±b: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
±±1b-111b: The PMBus device attempts to restart continuously, without limitation, at intervals of Mfr_retry_  
delay, until it is commanded OFF (by the CONTROL pin or OPERATION command or both), bias power is  
removed, or another fault condition causes the unit to shut down.  
b[2:±] Vout_ov_fault_response_delay, This sample count determines the amount of time a unit is to ignore a fault after it is first detected. Use this  
delay to deglitch fast faults.  
Vout_uv_fault_response_delay  
±±±b: The unit turns off immediately.  
±±1b-111b: The unit turns off after b[2:±] samples at the sampling period of ts_vs (12.2µs typical).  
2978fc  
35  
LTC2978  
PMBus COMMAND DESCRIPTION  
FAULT RESPONSE FOR VALUES MEASURED BY THE ADC  
OT_FAULT_RESPONSE, UT_FAULT_RESPONSE, VIN_OV_FAULT_RESPONSE and VIN_UV_FAULT_RESPONSE  
The fault response documented here is for values that are measured by the ADC. These values are measured over a  
longer period of time and are not deglitched. Note that in addition to the response described by these commands, the  
LTC2978 will also:  
•ꢀ Setꢀtheꢀappropriateꢀbit(s)ꢀinꢀtheꢀSTATUS_BYTE  
•ꢀ Setꢀtheꢀappropriateꢀbit(s)ꢀinꢀtheꢀSTATUS_WORD  
•ꢀ SetꢀtheꢀappropriateꢀbitꢀinꢀtheꢀcorrespondingꢀSTATUS_VINꢀorꢀSTATUS_TEMPERATUREꢀregister,ꢀand  
•ꢀ NotifyꢀtheꢀhostꢀbyꢀpullingꢀtheꢀALERTBꢀpinꢀlow.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:6] Ot_fault_response_action,  
Ut_fault_response_action,  
Response action:  
±±b: The unit continues operation without interruption.  
Vin_ov_fault_response_action, ±1b to 11b: The device shuts down and responds according to the retry setting in bits [ꢀ:3].  
Vin_uv_fault_response_action  
b[ꢀ:3] Ot_fault_response_retry,  
Response retry behavior:  
Ut_fault_response_retry,  
±±±b: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
Vin_ov_fault_response_retry,  
Vin_uv_fault_response_retry  
±±1b-111b: The PMBus device attempts to restart continuously, without limitation, using Mfr_retry_delay,  
until it is commanded OFF (by the CONTROLn pin or OPERATION command or both), bias power is removed,  
or another fault condition causes the unit to shut down.  
b[2:±] Ot_fault_response_delay,  
Ut_fault_response_delay,  
Hard coded to ±±±b. The unit turns off immediately.  
Vin_ov_fault_response_delay,  
Vin_uv_fault_response_delay  
TIMED FAULT RESPONSE  
TON_MAX_FAULT_RESPONSE  
This command defines the LTC2978 response to a TON_MAX_FAULT. It may be used to protect against a short-circuited  
output at start-up. After start-up use VOUT_UV_FAULT_RESPONSE to protect against a short-circuited output.  
The device also:  
•ꢀ SetsꢀtheꢀHIGH_BYTEꢀbitꢀinꢀtheꢀSTATUS_BYTE,  
•ꢀ SetsꢀtheꢀVOUTꢀbitꢀinꢀtheꢀSTATUS_WORD,  
•ꢀ SetsꢀtheꢀTON_MAX_FAULTꢀbitꢀinꢀtheꢀSTATUS_VOUTꢀregister,ꢀand  
•ꢀ NotifiesꢀtheꢀhostꢀbyꢀassertingꢀALERTB.  
2978fc  
36  
LTC2978  
PMBus COMMAND DESCRIPTION  
TON_MAX_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
b[7:6] Ton_max_fault_response_action Response action:  
±±b: The unit continues operation without interruption.  
OPERATION  
±1b: The unit continues operating for the delay time specified which for this type of fault corresponds to an  
immediate shutdown. After shutting off, the device responds according to the retry settings in bits [ꢀ:3].  
1Xb: The device shuts down and responds according to the retry setting in bits [ꢀ:3].  
Response retry behavior:  
b[ꢀ:3] Ton_max_fault_response_retry  
±±±b: A zero value for the Retry Setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
±±1b-111b: The PMBus device attempts to restart continuously, without limitation, using Mfr_retry_delay,  
until it is commanded OFF (by the CONTROLn pin or OPERATION command or both), bias power is removed,  
or another fault condition causes the unit to shut down.  
b[2:±] Ton_max_fault_response_delay Hard coded to ±±±b. The unit turns off immediately.  
Clearing Latched Faults  
Latched faults are reset by toggling the CONTROL pin, using the OPERATION command, or removing and reapplying  
the bias voltage to the V  
pin. All fault and warning conditions result in the ALERTB pin being asserted low and  
IN_SNS  
the corresponding bits being set in the status registers. The CLEAR_FAULTS command resets the contents of the status  
registers and de-asserts the ALERTB output, but it does not clear a faulted off state nor allow a channel to turn back on.  
STATUS COMMANDS  
STATUS_BYTE:  
The STATUS_BYTE command returns the summary of the most critical faults or warnings which have occurred, as  
shown in the following table. STATUS_BYTE is a subset of STATUS_WORD and duplicates the same information.  
STATUS_BYTE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7]  
b[6]  
b[ꢀ]  
b[4]  
b[3]  
b[2]  
b[1]  
b[±]  
Status_byte_busy  
Same as Status_word_busy  
Same as Status_word_off  
Same as Status_word_vout_ov  
Same as Status_word_iout_oc  
Same as Status_word_vin_uv  
Same as Status_word_temp  
Same as Status_word_cml  
Same as Status_word_high_byte  
Status_byte_off  
Status_byte_vout_ov  
Status_byte_iout_oc  
Status_byte_vin_uv  
Status_byte_temp  
Status_byte_cml  
Status_byte_high_byte  
2978fc  
37  
LTC2978  
PMBus COMMAND DESCRIPTION  
STATUS_WORD:  
The STATUS_WORD command returns two bytes of information with a summary of the unit’s fault condition. Based  
on the information in these bytes, the host can get more information by reading detailed status register.  
The low byte of the STATUS_WORD is the same register as the STATUS_BYTE command.  
STATUS_WORD Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ] Status_word_vout  
b[14] Status_word_iout  
b[13] Status_word_input  
b[12] Status_word_mfr  
An output voltage fault or warning has occurred. See STATUS_VOUT.  
Notsupported.Alwaysreturns±.  
An input voltage fault or warning has occurred. See STATUS_INPUT.  
A manufacturer specific fault has occurred. See STATUS_MFR_SPECIFIC.  
b[11] Status_word_power_not_good The POWER_GOOD signal, if present is negated. Power is not good.  
b[1±] Status_word_fans  
Notsupported.Alwaysreturns±.  
b[9]  
b[8]  
b[7]  
b[6]  
Status_word_other  
Status_word_unknown  
Status_word_busy  
Status_word_off  
Notsupported.Alwaysreturns±.  
Notsupported.Alwaysreturns±.  
Device busy when PMBus command received. See OPERATION: Processing Commands.  
This bit is asserted if the unit is not providing power to the output, regardless of the reason, including  
simply not being enabled. The off bit is clear if unit is allowed to provide power to the output.  
b[ꢀ]  
b[4]  
b[3]  
b[2]  
b[1]  
b[±]  
Status_word_vout_ov  
Status_word_iout_oc  
Status_word_vin_uv  
Status_word_temp  
Status_word_cml  
An output overvoltage fault has occured.  
Notsupported.Alwaysreturns±.  
A V undervoltage fault has occurred.  
IN  
A temperature fault or warning has occurred. See STATUS_TEMPERATURE.  
A communication, memory or logic fault has occurred. See STATUS_CML.  
A fault/warning not listed in b[7:1] has occurred.  
Status_word_high_byte  
STATUS_VOUT  
The STATUS_VOUT command returns the summary of the output voltage faults or warnings which have occurred, as  
shown in the following table:  
STATUS_VOUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_vout_ov_fault  
b[6] Status_vout_ov_warn  
b[ꢀ] Status_vout_uv_warn  
b[4] Status_vout_uv_fault  
b[3] Status_vout_max_fault  
Overvoltage fault.  
Overvoltage warning.  
Undervoltage warning  
Undervoltage fault.  
VOUT_MAX fault. An attempt has been made to set the output voltage to a value higher than allowed by the  
VOUT_MAX command.  
b[2] Status_vout_ton_max_fault  
b[1] Status_vout_toff_max_warn  
b[±] Status_vout_tracking_error  
TON_MAX_FAULT sequencing fault.  
Not supported. Always returns ±.  
Not supported. Always returns ±.  
2978fc  
38  
LTC2978  
PMBus COMMAND DESCRIPTION  
STATUS_INPUT  
The STATUS_INPUT command returns the summary of the V faults or warnings which have occurred, as shown in  
IN  
the following table:  
STATUS_INPUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7]  
b[6]  
b[ꢀ]  
b[4]  
b[3]  
b[2]  
b[1]  
b[±]  
Status_input_ov_fault  
V
V
V
V
Overvoltage fault  
IN  
IN  
IN  
IN  
Status_input_ov_warn  
Status_input_uv_warn  
Status_input_uv_fault  
Status_input_off  
Overvoltage warning  
Undervoltage warning  
Undervoltage fault  
Unit is off for insufficient input voltage.  
Not supported. Always returns ±.  
Not supported. Always returns ±.  
Not supported. Always returns ±.  
I
IN  
I
IN  
overcurrent fault  
overcurrent warn  
PIN overpower warn  
STATUS_TEMPERATURE  
The STATUS_TEMPERATURE command returns the summary of the temperature faults or warnings which have oc-  
curred, as shown in the following table:  
STATUS_TEMPERATURE Data Contents  
Bit(s) Symbol  
Operation  
b[7] Status_temperature_ot_fault  
Overtemperature fault.  
b[6] Status_temperature_ot_warn Overtemperature warning.  
b[ꢀ] Status_temperature_ut_warn Undertemperature warning.  
b[4] Status_temperature_ut_fault  
b[3] Reserved  
Undertemperature fault.  
Reserved. Always returns ±.  
Reserved. Always returns ±.  
Reserved. Always returns ±.  
Reserved. Always returns ±.  
b[2] Reserved  
b[1] Reserved  
b[±] Reserved  
2978fc  
39  
LTC2978  
PMBus COMMAND DESCRIPTION  
STATUS_CML  
The STATUS_CML command returns the summary of the communication, memory and logic faults or warnings which  
have occurred, as shown in the following table:  
STATUS_CML Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_cml_cmd_fault  
b[6] Status_cml_data_fault  
b[ꢀ] Status_cml_pec_fault  
Illegal or unsupported command fault has occurred.  
Illegal or unsupported data received.  
A PEC fault has occurred. Note: PEC checking is always active in the LTC2978. Any extra byte received before a  
STOP will set Status_cml_pec_fault unless the extra byte is a matching PEC byte.  
b[4] Status_cml_memory_fault  
A fault has occurred in the NVM. (EEPROM).  
b[3] Status_cml_processor_fault Not supported, always returns ±.  
b[2] Reserved  
Reserved, always returns ±.  
b[1] Status_cml_pmbus_fault  
A communication fault other than ones listed in this table has occurred. This is a catch all category for illegally  
2
formed I C/SMBus commands (Example: An address byte with read =1 received immediately after a START).  
b[±] Status_cml_unknown_fault Not supported, always returns ±.  
STATUS_MFR_SPECIFIC  
TheSTATUS_MFR_SPECIFICcommandreturnsmanufacturerspecificstatusags. BitsmarkedFAULT=Noareintended  
to support polled handshaking; these are not latched nor do they assert ALERTB. Bits marked FAULT = Yes assert  
ALERTB low and are cleared by CLEAR_FAULTS. Bits marked Channel = All can be read from any page.  
STATUS_MFR_SPECIFIC Data Contents  
BIT(S) SYMBOL  
OPERATION  
A V discharge fault occurred while attempting to enter the ON state  
CHANNEL  
FAULT  
Yes  
b[7] Status_mfr_discharge  
b[6] Status_mfr_fault1_in  
Current Page  
OUT  
This channel attempted to turn on while the FAULTBz1 pin was asserted low, Current Page  
or this channel has shut down at least once in response to a FAULTBz1 pin  
asserting low since the last CONTROLn pin toggle, OPERATION command  
ON/OFF cycle or CLEAR_FAULTS command.  
Yes  
b[ꢀ] Status_mfr_fault±_in  
This channel attempted to turn on while the FAULTBz± pin was asserted low, Current Page  
or this channel has shut down at least once in response to a FAULTBz± pin  
asserting low since the last CONTROLn pin toggle, OPERATION command  
ON/OFF cycle or CLEAR_FAULTS command.  
Yes  
b[4] Status_mfr_servo_target_reached Servo target has been reached.  
Current Page  
Current Page  
Current Page  
No  
No  
b[3] Status_mfr_dac_connected  
b[2] Status_mfr_dac_saturated  
DAC is connected and driving V  
pin.  
DACP  
A previous servo operation terminated with maximum or minimum DAC  
value.  
Yes  
b[1] Status_mfr_vinen_faulted_off  
b[±] Status_mfr_watchdog_fault  
V
has been deasserted due to a V  
fault.  
All  
All  
No  
IN_EN  
OUT  
A watchdog fault has occurred.  
Yes  
2978fc  
40  
LTC2978  
PMBus COMMAND DESCRIPTION  
ADC MONITORING COMMANDS  
READ_VIN  
This command returns the most recent ADC measured value of the voltage measured at the V  
pin.  
IN_SNS  
READ_VIN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Read_vin[1ꢀ:±] The data uses the L11 format.  
Units: V  
READ_VOUT  
This command returns the most recent ADC measured value of the channel’s output voltage. When odd channels are  
configured to measure current, the data contents use the L11 format with units in mV.  
READ_VOUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Read_vout[1ꢀ:±] The data uses the L16 format.  
Units: V  
READ_VOUT Data Contents—for Odd Channels Configured to Measure Current  
Bit(s) Symbol  
Operation  
The data uses the L11 format.  
Units: mV  
b[1ꢀ:±] Read_vout[1ꢀ:±]  
READ_TEMPERATURE_1  
This command returns the most recent ADC measured value of junction temperature in °C as determined by the  
LTC2978’s internal temperature sensor.  
READ_TEMPERATURE_1 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Read_temperature_1 [1ꢀ:±] The data uses the L11 format.  
Units: °C.  
PMBUS_REVISION  
The PMBUS_REVISION command register is read only and reports the LTC2978 compliance to the PMBus standard  
revision 1.1.  
PMBUS_REVISION Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:±] PMBus_rev Reports the PMBus standard revision compliance. This is hard-coded to ±x11 for revision 1.1.  
2978fc  
41  
LTC2978  
PMBus COMMAND DESCRIPTION  
MANUFACTURER SPECIFIC COMMANDS  
MFR_CONFIG_LTC2978  
This command is used to configure various manufacturer specific operating parameters for each channel.  
MFR_CONFIG_LTC2978 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:12] Reserved  
Don’t care. Always returns ±.  
b[11] Mfr_config_fast_servo_off  
Disables fast servo when margining or trimming output voltages:  
±: fast-servo enabled.  
1: fast-servo disabled.  
b[1±] Mfr_config_supervisor_resolution Selects supervisor resolution:  
±: high resolution – 4mV/LSB, range for V  
– V  
is ±V to 3.8V.  
is ±V to 6.±V.  
VSENSEPn  
VSENSEMn  
1: low resolution – 8mV/LSB, range for V  
– V  
VSENSEPn  
VSENSEMn  
b[9] Mfr_config_adc_hires  
Selects ADC resolution for odd channels. This is typically used to measure current. Ignored for even  
channels (they always use low resolution).  
±: low resolution – 122µV/LSB.  
1: high resolution – 1ꢀ.6µV/LSB.  
b[8] Mfr_config_controln_sel  
Selects the active control pin input (CONTROL± or CONTROL1) for this channel.  
±: Select CONTROL± pin.  
1: Select CONTROL1 pin.  
b[7] Mfr_config_servo_continuous  
Select whether the UNIT should continuously servo V  
after it has reached a new margin or nominal  
OUT  
target. Only applies when Mfr_config_dac_mode = ±±b.  
±: Do not continuously servo V after reaching initial target.  
OUT  
1: Continuously servo V  
to target.  
OUT  
b[6] Mfr_config_servo_on_warn  
b[ꢀ:4] Mfr_config_dac_mode  
Control re-servo on warning feature. Only applies when Mfr_config_dac_mode = ±±b and  
Mfr_config_servo_continuous = ±.  
±: Do not allow the unit to re-servo when a V  
warning threshold is met or exceeded.  
OUT  
1: Allow the unit to re-servo V  
to nominal target if  
OUT  
V
V
≥ V(Vout_ov_warn_limit) or  
≤ V(Vout_uv_warn_limit).  
OUT  
OUT  
Determines how DAC is used when channel enters ON state or is already in ON state.  
±±: Soft connect (if needed) and servo to target. Wait for TON_RISE if just entering ON state.  
±1: DAC not connected.  
1±: DAC connected using value from MFR_DAC command.  
11: DAC is soft connected. After soft connect is complete MFR_DAC may be written.  
b[3] Mfr_config_vo_en_wpu_en  
b[2] Mfr_config_vo_en_wpd_en  
V
pin charge pumped, current-limited pull-up enable.  
OUT_EN  
±: Disable weak pull-up. V  
1: Use weak current-limited pull-up on V  
For channels 4-7 this bit is treated as a ± regardless of its value.  
pin driver is three-stated when channel is on.  
OUT_EN  
pin when the channel is on.  
OUT_EN  
V
pin current-limited pull-down enable.  
OUT_EN  
±: Use a fast N-channel device to pull down V  
pin when the channel is off for any reason.  
OUT_EN  
1: Use weak current-limited pull-down to discharge V  
pin when channel is off due to soft stop by the  
OUT_EN  
CONTROLn pin and/or OPERATION command. If the channel is off due to a fault, use the fast pull-down on  
V
pin.  
OUT_EN  
For channels 4-7 this bit is treated as a ± regardless of its value.  
b[1] Mfr_config_dac_gain  
b[±] Mfr_config_dac_pol  
DAC buffer gain.  
±: Select DAC buffer gain dac_gain_± (1.38V full-scale)  
1: Select DAC buffer gain dac_gain_1 (2.6ꢀV full-scale)  
DAC output polarity.  
±: Encodes negative (inverting) DC/DC converter trim input.  
1: Encodes positive (noninverting) DC/DC converter trim input.  
2978fc  
42  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_CONFIG_ALL_LTC2978  
This command is used to configure parameters that are common to all channels on the IC. They may be set or reviewed  
from any PAGE setting.  
MFR_CONFIG_ALL_LTC2978 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Mfr_config_fault_log_enable  
Enable fault logging to NVM in response to Fault.  
±: Fault logging to NVM is disabled  
1: Fault logging to NVM is enabled  
VIN_ON rising edge to clear all latched faults  
±: VIN_ON clear faults feature is disabled  
1: VIN_ON clear faults feature is enabled  
Selects active polarity of control1 pin.  
±: Active low (pull pin low to start unit)  
1: Active high (pull pin high to start unit)  
Selects active polarity of control± pin.  
±: Active low (pull pin low to start unit)  
1: Active high (pull pin high to start unit)  
b[6] Mfr_vin_on_clr_faults_en  
b[ꢀ] Mfr_config_control1_pol  
b[4] Mfr_config_control±_pol  
b[3] Mfr_config_vin_share_enable  
Allow this unit to hold share-clock pin low when VIN_ON has fallen below VIN_OFF. When enabled, this unit  
will also turn all channels off in response to share-clock being held low.  
±: Share-clock inhibit is disabled  
1: Share-clock inhibit is enabled  
PMBus packet error checking enable.  
±: PEC is accepted but not required  
1: PEC is required  
b[2] Mfr_config_all_pec_en  
b[1] Mfr_config_all_longer_pmbus_ Increase PMBus timeout internal by a factor of 8. Recommended for fault logging.  
timeout  
±: PMBus timeout is not multiplied by a factor of 8  
1: PMBus timeout is multiplied by a factor of 8  
b[±] Mfr_config_all_vinen_wpu_dis  
V
IN_EN  
charge pumped, current-limited pull-up disable.  
±: Use weak current-limited pull-up on V  
after power-up, as long as no faults have forced V  
off.  
IN_EN  
IN_EN  
1: Disable weak pull-up. V  
off.  
driver is three-stated after power-up as long as no faults have forced V  
IN_EN  
IN_EN  
2978fc  
43  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_FAULTz0_PROPAGATE, MFR_FAULTz1_PROPAGATE  
These manufacturer specific commands enable channels that have faulted off to propagate that state to the appropri-  
ate fault pin. Faulted off states for pages ± through 3 can only be propagated to pins FAULTB±± and FAULTB±1; this is  
referred to as zone ±. Faulted off states for pages 4 through 7 can only be propagated to pins FAULTB1± and FAULTB11;  
this is referred to as zone 1. The z designator in the command name is used to indicate that this command affects  
different zones depending on the page. See Figure 19.  
Note that pulling a fault pin low will have no affect for channels that have MRF_FAULTBzn_RESPONSE set to ±. The  
channel continues operation without interruption. This fault response is called no action in LTpowerPlay™.  
MFR_FAULTz0_PROPAGATE Data Content  
BIT(S) SYMBOL  
OPERATION  
b[7:1]  
b[±]  
Reserved  
Don’t care. Always returns ±.  
Enable fault propagation.  
Mfr_faultbz±_propagate  
For pages ± through 3, zone ±  
±: Channel’s faulted off state does not assert FAULTB±± low.  
1: Channel’s faulted off state asserts FAULTB±± low.  
For pages 4 through 7, zone 1  
±: Channel’s faulted off state does not assert FAULTB1± low.  
1: Channel’s faulted off state asserts FAULTB1± low.  
MFR_FAULTz1_PROPAGATE Data Content  
BIT(S) SYMBOL  
OPERATION  
b[7:1]  
b[±]  
Reserved  
Don’t care. Always returns ±.  
Mfr_faultbz1_propagate  
Enable fault propagation.  
For pages ± through 3, zone ±  
±: Channel’s faulted off state does not assert FAULTB±1 low.  
1: Channel’s faulted off state asserts FAULTB±1 low.  
For pages 4 through 7, zone 1  
±: Channel’s faulted off state does not assert FAULTB11 low.  
1: Channel’s faulted off state asserts FAULTB11 low.  
2978fc  
44  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_PWRGD_EN  
This command register controls the mapping of the watchdog and channel power good status to the PWRGD pin. Note  
that odd numbered channels whose ADC is in high res mode do not contribute to power good.  
MFR_PWRGD_EN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:9] Reserved  
Read only, always returns ±s.  
Watchdog  
b[8] Mfr_pwrgd_en_wdog  
1 = Watchdog timer not-expired status is ANDed with PWRGD status for any similarly enabled channels to  
determine when the PWRGD pin gets asserted.  
± = Watchdog timer does not affect the PWRGD pin.  
Channel 7  
b[7] Mfr_pwrgd_en_chan7  
b[6] Mfr_pwrgd_en_chan6  
b[ꢀ] Mfr_pwrgd_en_chanꢀ  
b[4] Mfr_pwrgd_en_chan4  
b[3] Mfr_pwrgd_en_chan3  
b[2] Mfr_pwrgd_en_chan2  
b[1] Mfr_pwrgd_en_chan1  
b[±] Mfr_pwrgd_en_chan±  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
± = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 6  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
± = PRWGD status for this channel does not affect the PWRGD pin.  
Channel ꢀ  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
± = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 4  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
± = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 3  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
± = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 2  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
± = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 1  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
± = PRWGD status for this channel does not affect the PWRGD pin.  
Channel ±  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
± = PRWGD status for this channel does not affect the PWRGD pin.  
2978fc  
45  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_FAULTB00_RESPONSE, MFR_FAULTB01_RESPONSE, MFR_FAULTB10_RESPONSE and MFR_  
FAULTB11_RESPONSE  
These manufacturer specific commands share the same format and specify the response to assertions of the FAULTB  
pins. For fault zone ±, MFR_FAULTB±±_RESPONSE determines whether channels ± to 3 shut off when the FAULTB±±  
pin is asserted, and MFR_FAULTB±1_RESPONSE determines whether channels ± to 3 shut off when the FAULTB±1  
pin is asserted. For fault zone 1, MFR_FAULTB1±_RESPONSE determines whether channels 4 to 7 shut off when the  
FAULTB1± pin is asserted, and MFR_FAULTB11_RESPONSE determines whether channels 4 to 7 shut off when the  
FAULTB11 pin is asserted. When a channel shuts off in response to a FAULTB pin, the ALERTB pin is asserted low and  
the appropriate bit is set in the STATUS_MFR_SPECIFIC register. For a graphical explanation, see the switches on the  
left hand side of Figure 19, Channel Fault Management Block Diagram.  
Data Contents—Fault Zone 0 Response Commands  
BIT(S) SYMBOL  
OPERATION  
b[7:4] Reserved  
Read only, always returns ±s.  
b[3] Mfr_faultb±±_response_chan3, Channel 3 response.  
Mfr_faultb±1_response_chan3 ±: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 1±µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[2] Mfr_faultb±±_response_chan2, Channel 2 response.  
Mfr_faultb±1_response_chan2 ±: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 1±µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[1] Mfr_faultb±±_response_chan1, Channel 1 response.  
Mfr_faultb±1_response_chan1 ±: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 1±µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[±] Mfr_faultb±±_response_chan±, Channel ± response.  
Mfr_faultb±1_response_chan± ±: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 1±µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
Data Contents—Fault Zone 1 Response Commands  
BIT(S) SYMBOL  
OPERATION  
b[7:4] Reserved  
Read only, always returns ±s.  
b[3] Mfr_faultb1±_response_chan7, Channel 7 response.  
Mfr_faultb11_response_chan7 ±: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 1±µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[2] Mfr_faultb1±_response_chan6, Channel 6 response.  
Mfr_faultb11_response_chan6 ±: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 1±µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[1] Mfr_faultb1±_response_chanꢀ, Channel ꢀ response.  
Mfr_faultb11_response_chanꢀ ±: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 1±µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[±] Mfr_faultb1±_response_chan4, Channel 4 response.  
Mfr_faultb11_response_chan4 ±: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 1±µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
2978fc  
46  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_VINEN_OV_FAULT_RESPONSE  
This command register determines whether V  
forced off.  
over voltage faults from a given channel cause the V  
pin to be  
IN_EN  
OUT  
MFR_VINEN_OV_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
OPERATION  
Response to channel 7 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
b[7] Mfr_vinen_ov_fault_response_chan7  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
b[6] Mfr_vinen_ov_fault_response_chan6  
b[ꢀ] Mfr_vinen_ov_fault_response_chanꢀ  
b[4] Mfr_vinen_ov_fault_response_chan4  
b[3] Mfr_vinen_ov_fault_response_chan3  
b[2] Mfr_vinen_ov_fault_response_chan2  
b[1] Mfr_vinen_ov_fault_response_chan1  
b[±] Mfr_vinen_ov_fault_response_chan±  
Response to channel 6 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel ꢀ VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel 4 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel 3 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel 2 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel 1 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel ± VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
2978fc  
47  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_VINEN_UV_FAULT_RESPONSE  
This command register determines whether V  
be forced off.  
undervoltage faults from a given channel cause the V  
pin to  
OUT  
IN_EN  
MFR_VINEN_UV_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
OPERATION  
Response to channel 7 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
b[7] Mfr_vinen_uv_fault_response_chan7  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
b[6] Mfr_vinen_uv_fault_response_chan6  
b[ꢀ] Mfr_vinen_uv_fault_response_chanꢀ  
b[4] Mfr_vinen_uv_fault_response_chan4  
b[3] Mfr_vinen_uv_fault_response_chan3  
b[2] Mfr_vinen_uv_fault_response_chan2  
b[1] Mfr_vinen_uv_fault_response_chan1  
b[±] Mfr_vinen_uv_fault_response_chan±  
Response to channel 6 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel ꢀ VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel 4 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel 3 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel 2 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel 1 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
Response to channel ± VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
± = Leave V  
as-is.  
IN_EN  
MFR_RETRY_DELAY  
ThiscommanddeterminestheretryintervalwhentheLTC2978isinretrymodeinresponsetoafaultcondition.  
MFR_RETRY_DELAY Data Contents  
BIT(S) SYMBOL  
b[1ꢀ:±] Mfr_retry_delay The data uses the L11 format.  
This delay is counted using SHARE_CLK only.  
OPERATION  
Delays are rounded to the nearest 2±±µs.  
Units: ms. Max delay is 13.1 sec.  
2978fc  
48  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_RESTART_DELAY  
ThiscommandsetstheminimumofftimeofaCONTROLinitiatedrestart.IftheCONTROLpinistoggledoffforatleast1±µs  
thenon,alldependentchannelsaredisabled,heldoffforatime=Mfr_restart_delay,thensequencedbackon.CONTROLn  
pin transitions whose OFF time exceeds Mfr_restart_delay are not affected by this command. A value of all zeros disables  
thisfeature.  
MFR_RESTART_DELAY Data Contents  
BIT(S) SYMBOL  
b[1ꢀ:±] Mfr_restart_delay The data uses the L11 format.  
This delay is counted using SHARE_CLK only.  
OPERATION  
Delays are rounded to the nearest 2±±µs.  
Units: ms. Max delay is 13.1 sec.  
MFR_VOUT_PEAK  
This command returns the maximum ADC measured value of the channel’s output voltage. This command is not sup-  
ported for odd channels that are configured to measure current. This register is reset to ±xF8±± (±.±) when the LTC2978  
emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_VOUT_PEAK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Mfr_vout_peak[1ꢀ:±] The data uses the L16 format.  
Units: V.  
MFR_VIN_PEAK  
2ꢀ  
This command returns the maximum ADC measured value of the input voltage. This register is reset to ±x7C±± (–2 )  
when the LTC2978 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_VIN_PEAK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Mfr_vin_peak[1ꢀ:±] The data uses the L11 format.  
Units: V  
MFR_TEMPERATURE_PEAK  
This command returns the maximum ADC measured value of junction temperature in °C as determined by the LTC2978’s  
2ꢀ  
internal temperature sensor. This register is reset to ±x7C±± (–2 ) when the LTC2978 emerges from power-on reset  
or when a CLEAR_FAULTS command is executed.  
MFR_TEMPERATURE_PEAK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Mfr_temperature_peak[1ꢀ:±] The data uses the L11 format.  
Units: °C.  
2978fc  
49  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_DAC  
This command register allows the user to directly program the 1±-bit DAC. Manual DAC writes require the channel to  
be in the ON state,TON_RISE to have expired and MFR_CONFIG_LTC2978 b[ꢀ:4] = 1±b or 11b. Writing MFR_CONFIG_  
LTC2978 b[ꢀ:4] = 1±b commands the DAC to hard connect with the value in Mfr_dac_direct_val. Writing b[ꢀ:4] = 11b  
commands the DAC to soft connect. Once the DAC has soft connected, Mfr_dac_direct_val returns the value that al-  
lowed the DAC to be connected without perturbing the power supply.  
MFR_DAC Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:1±] Reserved  
Read only, always returns ±.  
b[9:±] Mfr_dac_direct_val DAC code value.  
MFR_POWERGOOD_ASSERTION_DELAY  
This command register allows the user to program the delay from when the internal power good signal becomes valid  
until the power good output is asserted. This delay is counted using SHARE_CLK if available, otherwise the internal  
oscillator is used. This delay is internally limited to 13.1 seconds, and rounded to the nearest 2±±µs. The read value  
of this command always returns what was last written and does not reflect internal limiting.  
MFR_POWERGOOD_ASSERTION_DELAY Data Contents  
BIT(S) SYMBOL  
b[1ꢀ:±] Mfr_powergood_assertion_delay The data uses the L11 format.  
This delay is counted using SHARE_CLK if available, otherwise the internal oscillator is used.  
OPERATION  
Delays are rounded to the nearest 2±±µs.  
Units: ms. Max delay is 13.1 sec.  
WATCHDOG OPERATION  
A non zero write to the MFR_WATCHDOG_T register will reset the watchdog timer. Low-to-high transitions on the WDI/  
RESETB pin also reset the watchdog timer. If the timer expires, ALERTB is asserted and the PWRGD output is optionally  
deassertedandthenreassertedafterMFR_PWRGD_ASSERTION_DELAYms.Writing±toeithertheMFR_WATCH_DOG_T  
or MFR_WATCHDOG_T_FIRST registers will disable the timer.  
MFR_WATCHDOG_T_FIRST and MFR_WATCHDOG_T  
The MFR_WATCHDOG_T_FIRST register allows the user to program the duration of the first watchdog timer interval  
following assertion of the POWER GOOD signal, assuming the POWER GOOD signal reflects the status of the watchdog  
timer. If assertion of POWER GOOD is not conditioned by the watchdog timer’s status, then MFR_WATCHDOG_T_FIRST  
applies to the first timing interval after the timer is enabled. Writing a value of ±ms to the MFR_WATCHDOG_T_FIRST  
register disables the watchdog timer.  
The MFR_WATCHDOG_T register allows the user to program watchdog time intervals subsequent to the MFR_  
WATCHDOG_T_FIRST timing interval. Writing a value of ±ms to the MFR_WATCHDOG_T register disables the  
watchdog timer. A non-zero write to MFR_WATCHDOG_T will reset the watchdog timer.  
2978fc  
50  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_WATCHDOG_T_POR and MFR_WATCHDOG_T Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Mfr_watchdog_t_first The data uses the L11 format.  
Mfr_watchdog_t  
These timers operate on an internal clock. The Mfr_watchdog_t timer will align to SHARE_CLK if it is running.  
Delays are rounded to the nearest 1±µs for _t and 1ms for _t_first.  
Writing a zero value for Y to the Mfr_watchdog_t or Mfr_watchdog_t_first registers will disable the watchdog timer.  
Units: ms. Max timeout is ±.6 sec for _t and 6ꢀ sec for _t_first  
MFR_PAGE_FF_MASK  
The MFR_PAGE_FF_MASK command is used to select which channels respond when the global page command  
(PAGE=±xFF) is in use.  
MFR_PAGE_FF_MASK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Mfr_page_ff_mask_chan7  
Channel 7 masking of global page command (PAGE=±xFF) accesses  
± = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 6 masking of global page command (PAGE=±xFF) accesses  
± = ignore global page command accesses  
b[6] Mfr_page_ff_mask_chan6  
b[ꢀ] Mfr_page_ff_mask_chanꢀ  
b[4] Mfr_page_ff_mask_chan4  
b[3] Mfr_page_ff_mask_chan3  
b[2] Mfr_page_ff_mask_chan2  
b[1] Mfr_page_ff_mask_chan1  
b[±] Mfr_page_ff_mask_chan±  
1 = fully respond to global page command accesses  
Channel ꢀ masking of global page command (PAGE=±xFF) accesses  
± = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 4 masking of global page command (PAGE=±xFF) accesses  
± = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 3 masking of global page command (PAGE=±xFF) accesses  
± = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 2 masking of global page command (PAGE=±xFF) accesses  
± = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 1 masking of global page command (PAGE=±xFF) accesses  
± = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel ± masking of global page command (PAGE=±xFF) accesses  
± = ignore global page command accesses  
1 = fully respond to global page command accesses  
2978fc  
51  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_PADS  
The MFR_PADS command provides read only access to slow frequency digital pads. The input values presented in  
bits[9:±] are before any deglitching logic.  
MFR_PADS_PWRGD_DRIVE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ] Mfr_pads_pwrgd_drive  
± = PWRGD pad is being driven low by this chip  
1 = PWRGD pad is not being driven low by this chip  
± = ALERTB pad is being driven low by this chip  
1 = ALERTB pad is not being driven low by this chip  
b[14] Mfr_pads_alertb_drive  
b[13:1±] Mfr_pads_faultb_drive[3.±] Bit[3] used for FAULTB±± pad, bit[2] used for FAULTB±1 pad, bit[1] used for FAULTB1± pad, bit[±] used for  
FAULTB11 pad as follows:  
± = FAULTBzn pad is being driven low by this chip  
1 = FAULTBzn pad is not being driven low by this chip  
b[9:8] Mfr_pads_asel1[1:±]  
b[7:6] Mfr_pads_asel±[1:±]  
11: Logic high detected on ASEL1 input pad  
1±: ASEL1 input pad is floating  
±1: Reserved  
±±: Logic low detected on ASEL1 input pad  
11: Logic high detected on ASEL± input pad  
1±: ASEL± input pad is floating  
±1: Reserved  
±±: Logic low detected on ASEL± input pad  
1: Logic high detected on CONTROL1 pad  
±: Logic low detected on CONTROL1 pad  
1: Logic high detected on CONTROL± pad  
±: Logic low detected on CONTROL± pad  
b[ꢀ] Mfr_pads_control1  
b[4] Mfr_pads_control±  
b[3:±] Mfr_pads_faultb[3:±]  
Bit[3] used for FAULTB±± pad, bit[2] used for FAULTB±1 pad, bit[1] used for FAULTB1± pad, bit[±] used for  
FAULTB11 pad as follows:  
1: Logic high detected on FAULTBzn pad  
±: Logic low detected on FAULTBzn pad  
MFR_I2C_BASE_ADDRESS  
2
The MFR_I2C_BASE_ADDRESS command determines the base value for the I C/SMBus address byte. Offsets of ±  
2
to 9 are added to this base address to make the device I C/SMBus address. The part responds to the device address.  
MFR_I2C_BASE_ADDRESS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Reserved  
Read only, always returns ±.  
2
b[6:±] i2c_base_address This 7-bit value determines the base value of the 7-bit I C/SMBus address. See Operation Section: Device Address.  
MFR_SPECIAL_ID  
This register contains the manufacturer ID for the LTC2978.  
MFR_SPECIAL_ID Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[1ꢀ:±]  
Mfr_special_id  
Read only, always returns ±x±121  
2978fc  
52  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_SPECIAL_LOT  
These paged registers contain information that identifies the user configuration that was programmed at the factory.  
MFR_SPECIAL_LOT Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[7:±]  
Mfr_special_lot  
Contains the LTC default special lot number. Contact the factory to request a custom factory programmed user configura-  
tion and special lot number.  
MFR_VOUT_DISCHARGE_THRESHOLD  
This register contains the coefficient that multiplies VOUT_COMMAND in order to determine the OFF thresh-  
old voltage for the associated output. If the output voltage has not decayed below MFR_VOUT_DISCHARGE_  
THRESHOLDꢀ•ꢀVOUT_COMMANDꢀpriorꢀtoꢀtheꢀchannelꢀbeingꢀcommandedꢀtoꢀenter/re-enterꢀtheꢀONꢀstate,ꢀbitꢀ[7]ꢀinꢀtheꢀ  
STATUS_MFR_SPECIFIC register will be set and the ALERTB pin will be asserted low. In addition, the channel will not  
enter the ON state until the output has decayed below its OFF threshold voltage.  
Other channels can be held off if a particular output has failed to discharge by using the bidirectional FAULTBzn pins  
(refer to the MFR_FAULTBzn_RESPONSE and MFR_FAULTBzn_PROPAGATE registers).  
MFR_VOUT_DISCHARGE_THRESHOLD Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[1ꢀ:±]  
Mfr_vout_discharge_ The data uses the L11 format.  
threshold  
Units: Dimensionless, this register contains a coefficient.  
MFR_COMMON  
This command returns status information for the share-clock pin (SHARE_CLK) and the write-protect pin (WP).  
MFR_COMMON Data Contents  
BIT(S)  
b[7:2]  
b[1]  
SYMBOL  
OPERATION  
Reserved  
Read only, always returns ±s  
Returns status of share-clock pin  
1: Share-clock pin is being held low  
±: Share-clock pin is active  
Returns status of write-protect pin  
1: Write-protect pin is high  
±: Write-protect pin is low  
Mfr_common_  
share_clk  
b[±]  
Mfr_common_  
write_protect  
MFR_SPARE0  
This 16-bit wide register can be used to store miscellaneous information. The contents of this register may be stored  
and recalled from EEPROM using the STORE_USER_ALL and RESTORE_USER_ALL commands, respectively.  
MFR_SPARE2  
These 16-bit wide, paged registers can be used to store miscellaneous information. The contents of these registers may  
bestoredandrecalledfromEEPROMusingtheSTORE_USER_ALLandRESTORE_USER_ALLcommands, respectively.  
2978fc  
53  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_VOUT_MIN  
This command returns the minimum ADC measured value of the channel’s output voltage. This register is reset to  
±xFFFF (7.999) when the LTC2978 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
When odd channels are configured to measure current, this command is not supported. Updates are disabled when  
undervoltage detection is disabled.  
MFR_VOUT_MIN Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[1ꢀ:±]  
Mfr_vout_min  
The data uses the L16 format.  
Units: V.  
MFR_VIN_MIN  
This command returns the minimum ADC measured value of the input voltage. This register is reset to ±x7BFF  
2ꢀ  
(approximately 2 ) when the LTC2978 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
Updates are disabled when unit is off for insufficient input voltage.  
MFR_VIN_MIN Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[1ꢀ:±]  
Mfr_vin_min  
The data uses the L11 format.  
Units: V.  
MFR_TEMPERATURE_MIN  
This command returns the minimum ADC measured value of junction temperature in °C as determined by the LTC2978’s  
2ꢀ  
internal temperature sensor. This register is reset to ±x7BFF (approximately 2 ) when the LTC2978 emerges from  
power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_TEMPERATURE_MIN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1ꢀ:±] Mfr_temperature_min The data uses the L11 format.  
Units: °C.  
FAULT LOG OPERATION  
A conceptual diagram of the fault log is shown in Figure 13. The fault log provides black box capability to the LTC2978.  
During normal operation, the contents of the status registers, the output voltage/current readings, temperature readings  
as well as peak and min values of these quantities are stored in a continuously updated buffer in RAM. You can think  
of the operation as being similar to a strip chart recorder. When a fault occurs, the contents are written into EEPROM  
for nonvolatile storage. The EEPROM fault log is then locked. The part can be powered down with the fault log being  
available for reading at a later time.  
2978fc  
54  
LTC2978  
PMBus COMMAND DESCRIPTION  
8
ADC READINGS  
CONTINUOUSLY  
FILL BUFFER  
TIME OF FAULT  
TRANSFER TO  
EEPROM AND  
LOCK  
.
.
.
.
.
.
RAM 255 BYTES  
EEPROM 255 BYTES  
AFTER FAULT  
READ FROM  
EEPROM AND  
LOCK BUFFER  
2978 F13  
Figure 13. Fault Log Conceptual Diagram  
MFR_FAULT_LOG_STORE  
This command allows the user to transfer data from the RAM buffer to EEPROM.  
MFR_FAULT_LOG_RESTORE  
This command allows the user to transfer a copy of the fault-log data from the EEPROM to the RAM buffer. After a  
restore the RAM buffer is locked until a successful Mfr_fault_log read.  
MFR_FAULT_LOG_CLEAR  
This command initializes the EEPROM block reserved for fault logging. Any previous fault log stored in EEPROM will  
be erased by this operation.  
MFR_FAULT_LOG_STATUS  
Read only. This register is used to manage fault log events.  
Mfr_fault_log_status_eepromissetafteraMFR_FAULT_LOG_STOREcommandorafaulted-offeventtriggersatransfer  
of the fault log from RAM to EEPROM. This bit is cleared by a MFR_FAULT_LOG_CLEAR command.  
Mfr_fault_log_status_ram is set after a MFR_FAULT_LOG_RESTORE to indicate that the data in the RAM has been  
restored from EEPROM and not yet read using a MFR_FAULT_LOG command. This bit is cleared only by a successful  
execution of an MFR_FAULT_LOG command.  
MFR_FAULT_LOG_STATUS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1] Mfr_fault_log_status_ram  
Fault log RAM status:  
±: The fault log RAM allows updates.  
1: The fault log RAM is locked until the next Mfr_fault_log read.  
b[±] Mfr_fault_log_status_eeprom Fault log EEPROM status:  
±: The transfer of the fault log RAM to the EEPROM is enabled.  
1: The transfer of the fault log RAM to the EEPROM is inhibited.  
2978fc  
55  
LTC2978  
PMBus COMMAND DESCRIPTION  
MFR_FAULT_LOG  
Table 2. Data Block Contents  
DATA  
BYTE* DESCRIPTION  
Read only. This 2±4±-bit data block contains a copy of  
the RAM buffer fault log. The RAM buffer is continuously  
updated after each ADC conversion as long as Mfr_fault_  
log_status_ramisclear.WithMfr_config_fault_log_en=1  
and Mfr_fault_log_status_eeprom = ±, the RAM buffer is  
transferredtoEEPROMwheneveranLTC2978faultcauses  
a channel to latch off or a MFR_FAULT_LOG_STORE com-  
mand is received. Mfr_fault_log_status_eeprom is set  
high after the RAM buffer is transferred to EEPROM and  
not cleared until a Mfr_fault_log_clear is received, even if  
the LTC2978 is reset or powered down. Fault log EEPROM  
transfers are not initiated as a result of Status_mfr_dis-  
charge, Status_mfr_fault1_in or Status_mfr_fault±_in  
events. During a Mfr_fault_log read, data is returned as  
defined by the following table. The fault log data is parti-  
tioned into two sections. The first section is referred to as  
the preamble and contains the Position-last pointer, time  
information and peak and minimum values. The second  
section contains a chronological record of telemetry and  
requires Position-last for proper interpretation. The fault  
log stores approximately 1 to 2 seconds of telemetry. To  
prevent timeouts during block reads, it is recommended  
that MFR_CONFIG_ALL_LTC2978 b[1] be set to 1.  
Position_last[7:±]  
±
Position of fault log pointer  
when fault occurred.  
SharedTime[7:±]  
SharedTime[1ꢀ:8]  
1
2
3
4
6
7
8
9
41-bit share-clock counter  
value when fault occurred.  
Counter LSB is in 2±±µs  
increments. This counter is  
cleared at power-up or after  
the LTC2978 is reset  
SharedTime[23:16]  
SharedTime[31:24]  
SharedTime[39:32]  
SharedTime[4±]  
Mfr_vout_peak±[7:±]  
Mfr_vout_peak±[1ꢀ:8]  
Mfr_vout_min±[7:±]  
Mfr_vout_min±[1ꢀ:8]  
Mfr_vout_peak1[7:±]  
Mfr_vout_peak1[1ꢀ:8]  
Mfr_vout_min1[7:±]  
Mfr_vout_min1[1ꢀ:8]  
Mfr_vin_peak[7:±]  
1±  
11  
12  
13  
14  
1ꢀ  
16  
17  
18  
19  
2±  
21  
22  
23  
24  
2ꢀ  
26  
27  
28  
29  
3±  
31  
32  
33  
34  
3ꢀ  
36  
37  
38  
39  
4±  
41  
42  
Mfr_vin_peak[1ꢀ:8]  
Mfr_vin_min[7:±]  
Mfr_vin_min[1ꢀ:8]  
Mfr_vout_peak2[7:±]  
Mfr_vout_peak2[1ꢀ:8]  
Mfr_vout_min2[7:±]  
Mfr_vout_min2[1ꢀ:8]  
Mfr_vout_peak3[7:±]  
Mfr_vout_peak3[1ꢀ:8]  
Mfr_vout_min3[7:±]  
Mfr_vout_min3[1ꢀ:8]  
Mfr_temp_peak[7:±]  
Mfr_temp_peak[1ꢀ:8]  
Mfr_ temp_min[7:±]  
Mfr_ temp_min[1ꢀ:8]  
Mfr_vout_peak4[7:±]  
Mfr_vout_peak4[1ꢀ:8]  
Mfr_vout_min4[7:±]  
Mfr_vout_min4[1ꢀ:8]  
Mfr_vout_peakꢀ[7:±]  
Mfr_vout_peakꢀ[1ꢀ:8]  
Mfr_vout_minꢀ[7:±]  
Mfr_vout_minꢀ[1ꢀ:8]  
Mfr_vout_peak6[7:±]  
Mfr_vout_peak6[1ꢀ:8]  
Mfr_vout_min6[7:±]  
Mfr_vout_min6[1ꢀ:8]  
2978fc  
56  
LTC2978  
PMBus COMMAND DESCRIPTION  
Table 2. Data Block Contents  
Table 3. Interpreting Cyclical Loop  
DATA  
BYTE* DESCRIPTION  
POSITION  
17  
DATA  
Read_vout3[1ꢀ:8]  
Status_vout3  
Mfr_vout_peak7[7:±]  
Mfr_vout_peak7[1ꢀ:8]  
Mfr_vout_min7[7:±]  
Mfr_vout_min7[1ꢀ:8]  
43  
44  
4ꢀ  
46  
18  
19  
2±  
21  
22  
23  
Status_mfr3  
Read_temperature_1[7:±]  
Read_temperature_1[1ꢀ:8]  
Status_temp  
47 bytes for preamble  
Fault_log [Position_last]  
Fault_log  
47  
48  
Reserved  
.
.
.
24  
2ꢀ  
26  
Read_vout4[7:±]  
Read_vout4[1ꢀ:8]  
Status_vout4  
27  
28  
29  
3±  
Status_mfr4  
Fault_log  
Reserved  
237  
238-2ꢀ4  
Last Valid Byte  
Read_voutꢀ[7:±]  
Read_voutꢀ[1ꢀ:8]  
Status_voutꢀ  
Number of loops  
(238-47)/4± = 4.8  
*Note: PMBus data byte numbers start at 1 rather than ±. Position_last is the  
first byte returned after BYTE COUNT = OxFF. See block read protocol.  
31  
32  
33  
34  
3ꢀ  
36  
37  
38  
Status_mfrꢀ  
Read_vout6[7:±]  
Read_vout6[1ꢀ:8]  
Status_vout6  
Thedatareturnedbetweenbytes47and237oftheprevious  
table is interpreted using Position_last and the following  
table. The key to identifying byte 47 is to locate the DATA  
corresponding to POSITION = Position_last in the next  
table. Subsequent bytes are identified by decrementing  
the value of POSITION. For example: If Position_last = 9  
then the first data returned in byte position 47 of a block  
readisRead_vin[1ꢀ:8]followedbyRead_vin[7:±]followed  
by Status_mfr of page 1. See Table 3.  
Status_mfr6  
Read_vout7[7:±]  
Read_vout7[1ꢀ:8]  
Status_vout7  
Status_mfr7  
Total Bytes =4±  
39  
The following table fully decodes a sample fault log read  
to help clarify the cyclical nature of the operation.  
MFR_FAULT_LOG DATA BLOCK CONTENTS  
PREAMBLE INFORMATION  
Table 3. Interpreting Cyclical Loop  
POSITION  
DATA  
±
1
2
3
4
6
7
8
Read_vout±[7:±]  
Read_vout±[1ꢀ:8]  
Status_vout±  
Status_mfr±  
Read_vout1[7:±]  
Read_vout1[1ꢀ:8]  
Status_vout1  
Status_mfr1  
BYTE  
BYTE  
NUMBER NUMBER  
DECIMAL  
HEX  
DATA  
DESCRIPTION  
±
±±  
Position_last[7:±] = 9 Position of  
Fault-Log  
Pointer When  
Fault Occured.  
1
±1  
SharedTime[7:±]  
41-Bit Share-  
Clock Counter  
Value When  
Fault Occurred.  
Counter LSB  
Is in 2±±µs  
Read_vin[7:±]  
Read_vin[1ꢀ:8]  
Status_vin  
9
1±  
11  
12  
13  
14  
1ꢀ  
16  
Reserved  
Increments.  
Read_vout2[7:±]  
Read_vout2[1ꢀ:8]  
Status_vout2  
Status_mfr2  
2
3
4
±2  
±3  
±4  
SharedTime[1ꢀ:8]  
SharedTime[23:16]  
SharedTime[31:24]  
Read_vout3[7:±]  
2978fc  
57  
LTC2978  
PMBus COMMAND DESCRIPTION  
BYTE  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER  
NUMBER NUMBER  
DECIMAL  
HEX  
±ꢀ  
±6  
±7  
±8  
±9  
±A  
±B  
±C  
±D  
±E  
±F  
1±  
11  
12  
13  
14  
1ꢀ  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
2±  
21  
22  
23  
24  
2ꢀ  
26  
27  
28  
29  
2A  
2B  
DATA  
DESCRIPTION  
DECIMAL  
HEX  
DATA  
DESCRIPTION  
SharedTime[39:32]  
SharedTime[4±]  
44  
4ꢀ  
46  
2C  
Mfr_vout_peak7[1ꢀ:8]  
Mfr_vout_min7[7:±]  
6
2D  
2E  
7
Mfr_vout_peak±[7:±]  
Mfr_vout_peak±[1ꢀ:8]  
Mfr_vout_min±[7:±]  
Mfr_vout_min±[1ꢀ:8]  
Mfr_vout_peak1[7:±]  
Mfr_vout_peak1[1ꢀ:8]  
Mfr_vout_min1[7:±]  
Mfr_vout_min1[1ꢀ:8]  
Mfr_vin_peak[7:±]  
Mfr_vout_min7[1ꢀ:8] End of Preamble  
8
CYCLICAL DATA LOOPS  
LOOP  
BYTE  
9
BYTE  
BYTE  
1±  
11  
12  
13  
14  
1ꢀ  
16  
17  
18  
19  
2±  
21  
22  
23  
24  
2ꢀ  
26  
27  
28  
29  
3±  
31  
32  
33  
34  
3ꢀ  
36  
37  
38  
39  
4±  
41  
42  
43  
NUMBER NUMBER NUMBER  
40 BYTES PER  
DECIMAL  
HEX  
DECIMAL  
DATA LOOP 0  
Read_vin[1ꢀ:8]  
Read_vin[7:±]  
Status_mfr1  
LOOP  
47  
2F  
9
8
7
6
4
3
2
1
±
Position_last  
48  
3±  
31  
32  
33  
34  
3ꢀ  
36  
37  
38  
49  
ꢀ±  
Status_vout1  
Mfr_vin_peak[1ꢀ:8]  
Mfr_vin_min[7:±]  
ꢀ1  
Read_vout1[1ꢀ:8]  
Read_vout1[7:±]  
Status_mfr±  
ꢀ2  
Mfr_vin_min[1ꢀ:8]  
Mfr_vout_peak2[7:±]  
Mfr_vout_peak2[1ꢀ:8]  
Mfr_vout_min2[7:±]  
Mfr_vout_min2[1ꢀ:8]  
Mfr_vout_peak3[7:±]  
Mfr_vout_peak3[1ꢀ:8]  
Mfr_vout_min3[7:±]  
Mfr_vout_min3[1ꢀ:8]  
Mfr_temp_peak[7:±]  
Mfr_temp_peak[1ꢀ:8]  
Mfr_ temp_min[7:±]  
Mfr_ temp_min[1ꢀ:8]  
Mfr_vout_peak4[7:±]  
Mfr_vout_peak4[1ꢀ:8]  
Mfr_vout_min4[7:±]  
Mfr_vout_min4[1ꢀ:8]  
Mfr_vout_peakꢀ[7:±]  
Mfr_vout_peakꢀ[1ꢀ:8]  
Mfr_vout_minꢀ[7:±]  
Mfr_vout_minꢀ[1ꢀ:8]  
Mfr_vout_peak6[7:±]  
Mfr_vout_peak6[1ꢀ:8]  
Mfr_vout_min6[7:±]  
Mfr_vout_min6[1ꢀ:8]  
Mfr_vout_peak7[7:±]  
ꢀ3  
ꢀ4  
Status_vout±  
ꢀꢀ  
Read_vout±[1ꢀ:8]  
Read_vout±[7:±]  
ꢀ6  
LOOP  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
DECIMAL  
HEX  
39  
3A  
3B  
3C  
3D  
3E  
3F  
DECIMAL  
DATA LOOP 1  
Status_mfr7  
ꢀ7  
39  
ꢀ8  
38  
Status_vout7  
ꢀ9  
37  
Read_vout7[1ꢀ:8]  
Read_vout7[7:±]  
Status_mfr6  
6±  
36  
61  
3ꢀ  
62  
34  
Status_vout6  
63  
33  
Read_vout6[1ꢀ:8]  
Read_vout6[7:±]  
Status_mfrꢀ  
64  
4±  
41  
42  
43  
44  
4ꢀ  
46  
47  
48  
49  
4A  
32  
6ꢀ  
31  
66  
3±  
Status_voutꢀ  
67  
29  
Read_voutꢀ[1ꢀ:8]  
Read_voutꢀ[7:±]  
Status_mfr4  
68  
28  
69  
27  
7±  
26  
Status_vout4  
71  
2ꢀ  
Read_vout4[1ꢀ:8]  
Read_vout4[7:±]  
Reserved  
72  
24  
73  
23  
74  
22  
Status_temp  
2978fc  
58  
LTC2978  
PMBus COMMAND DESCRIPTION  
LOOP  
LOOP  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
DECIMAL  
HEX  
DECIMAL  
DATA LOOP 1  
DECIMAL  
HEX  
6D  
6E  
6F  
DECIMAL  
DATA LOOP 2  
Status_mfr4  
7ꢀ  
4B  
21  
Read_  
temperature_1[1ꢀ:8]  
1±9  
27  
26  
2ꢀ  
24  
23  
22  
21  
11±  
Status_vout4  
Read_vout4[1ꢀ:8]  
Read_vout4[7:±]  
Reserved  
76  
4C  
2±  
Read_  
temperature_1[7:±]  
111  
112  
7±  
71  
72  
73  
77  
78  
79  
8±  
81  
82  
83  
84  
8ꢀ  
86  
87  
88  
89  
9±  
91  
92  
93  
94  
9ꢀ  
96  
4D  
4E  
4F  
ꢀ±  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
ꢀA  
ꢀB  
ꢀC  
ꢀD  
ꢀE  
ꢀF  
6±  
19  
18  
17  
16  
1ꢀ  
14  
13  
12  
11  
1±  
9
Status_mfr3  
113  
Status_vout3  
114  
Status_temp  
Read_vout3[1ꢀ:8]  
Read_vout3[7:±]  
Status_mfr2  
11ꢀ  
Read_temperature_  
1[1ꢀ:8]  
116  
74  
2±  
Read_temperature_  
1[7:±]  
Status_vout2  
Read_vout2[1ꢀ:8]  
Read_vout2[7:±]  
Reserved  
117  
118  
119  
12±  
121  
122  
123  
124  
12ꢀ  
126  
127  
128  
129  
13±  
131  
132  
133  
134  
13ꢀ  
136  
7ꢀ  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
8±  
81  
82  
83  
84  
8ꢀ  
86  
87  
88  
19  
18  
17  
16  
1ꢀ  
14  
13  
12  
11  
1±  
9
Status_mfr3  
Status_vout3  
Read_vout3[1ꢀ:8]  
Read_vout3[7:±]  
Status_mfr2  
Status_vin  
Read_vin[1ꢀ:8]  
Read_vin[7:±]  
Status_mfr1  
8
Status_vout2  
7
Read_vout2[1ꢀ:8]  
Read_vout2[7:±]  
Reserved  
6
Status_vout1  
Read_vout1[1ꢀ:8]  
Read_vout1[7:±]  
Status_mfr±  
4
Status_vin  
3
Read_vin[1ꢀ:8]  
Read_vin[7:±]  
Status_mfr1  
2
Status_vout±  
8
1
Read_vout±[1ꢀ:8]  
Read_vout±[7:±]  
7
±
6
Status_vout1  
Read_vout1[1ꢀ:8]  
Read_vout1[7:±]  
Status_mfr±  
LOOP  
BYTE  
4
BYTE  
BYTE  
3
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
2
Status_vout±  
DECIMAL  
HEX  
61  
62  
63  
64  
6ꢀ  
66  
67  
68  
69  
6A  
6B  
6C  
DECIMAL  
DATA LOOP 2  
Status_mfr7  
1
Read_vout±[1ꢀ:8]  
Read_vout±[7:±]  
97  
39  
±
98  
38  
Status_vout7  
99  
37  
Read_vout7[1ꢀ:8]  
Read_vout7[7:±]  
Status_mfr6  
LOOP  
BYTE  
1±±  
1±1  
1±2  
1±3  
1±4  
1±ꢀ  
1±6  
1±7  
1±8  
36  
BYTE  
BYTE  
3ꢀ  
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
34  
Status_vout6  
DECIMAL  
HEX  
DECIMAL  
DATA LOOP 3  
Status_mfr7  
33  
Read_vout6[1ꢀ:8]  
Read_vout6[7:±]  
Status_mfrꢀ  
137  
89  
39  
38  
37  
36  
3ꢀ  
32  
138  
8A  
8B  
8C  
8D  
Status_vout7  
31  
139  
Read_vout7[1ꢀ:8]  
Read_vout7[7:±]  
Status_mfr6  
3±  
Status_voutꢀ  
14±  
29  
Read_voutꢀ[1ꢀ:8]  
Read_voutꢀ[7:±]  
141  
28  
2978fc  
59  
LTC2978  
PMBus COMMAND DESCRIPTION  
LOOP  
LOOP  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
DECIMAL  
142  
143  
144  
14ꢀ  
146  
147  
148  
149  
1ꢀ±  
1ꢀ1  
1ꢀ2  
1ꢀ3  
1ꢀ4  
1ꢀꢀ  
HEX  
8E  
8F  
DECIMAL  
DATA LOOP 3  
Status_vout6  
DECIMAL  
177  
178  
179  
18±  
181  
182  
183  
184  
18ꢀ  
186  
187  
188  
189  
19±  
191  
192  
193  
194  
19ꢀ  
HEX  
B1  
B2  
B3  
B4  
Bꢀ  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
C±  
C1  
C2  
C3  
DECIMAL  
DATA LOOP 4  
Status_mfr7  
34  
39  
33  
Read_vout6[1ꢀ:8]  
Read_vout6[7:±]  
Status_mfrꢀ  
38  
Status_vout7  
9±  
91  
92  
93  
94  
9ꢀ  
96  
97  
98  
99  
9A  
9B  
32  
37  
Read_vout7[1ꢀ:8]  
Read_vout7[7:±]  
Status_mfr6  
31  
36  
3±  
Status_voutꢀ  
3ꢀ  
29  
Read_voutꢀ[1ꢀ:8]  
Read_voutꢀ[7:±]  
Status_mfr4  
34  
Status_vout6  
28  
33  
Read_vout6[1ꢀ:8]  
Read_vout6[7:±]  
Status_mfrꢀ  
27  
32  
26  
Status_vout4  
31  
2ꢀ  
Read_vout4[1ꢀ:8]  
Read_vout4[7:±]  
Reserved  
3±  
Status_voutꢀ  
24  
29  
Read_voutꢀ[1ꢀ:8]  
Read_voutꢀ[7:±]  
Status_mfr4  
23  
28  
22  
Status_temp  
27  
21  
Read_temperature_  
1[1ꢀ:8]  
26  
Status_vout4  
2ꢀ  
Read_vout4[1ꢀ:8]  
Read_vout4[7:±]  
Reserved  
1ꢀ6  
9C  
2±  
Read_temperature_  
1[7:±]  
24  
23  
1ꢀ7  
1ꢀ8  
1ꢀ9  
16±  
161  
162  
163  
164  
16ꢀ  
166  
167  
168  
169  
17±  
171  
172  
173  
174  
17ꢀ  
176  
9D  
9E  
9F  
19  
18  
17  
16  
1ꢀ  
14  
13  
12  
11  
1±  
9
Status_mfr3  
22  
Status_temp  
Status_vout3  
21  
Read_temperature_  
1[1ꢀ:8]  
Read_vout3[1ꢀ:8]  
Read_vout3[7:±]  
Status_mfr2  
A±  
A1  
A2  
A3  
A4  
Aꢀ  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B±  
196  
C4  
2±  
Read_temperature_  
1[7:±]  
Status_vout2  
197  
198  
199  
2±±  
2±1  
2±2  
2±3  
2±4  
2±ꢀ  
2±6  
2±7  
2±8  
2±9  
21±  
211  
Cꢀ  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D±  
D1  
D2  
D3  
19  
18  
17  
16  
1ꢀ  
14  
13  
12  
11  
1±  
9
Status_mfr3  
Read_vout2[1ꢀ:8]  
Read_vout2[7:±]  
Reserved  
Status_vout3  
Read_vout3[1ꢀ:8]  
Read_vout3[7:±]  
Status_mfr2  
Status_vin  
Read_vin[1ꢀ:8]  
Read_vin[7:±]  
Status_mfr1  
Status_vout2  
Read_vout2[1ꢀ:8]  
Read_vout2[7:±]  
Reserved  
8
7
6
Status_vout1  
Read_vout1[1ꢀ:8]  
Read_vout1[7:±]  
Status_mfr±  
Status_vin  
4
Read_vin[1ꢀ:8]  
Read_vin[7:±]  
Status_mfr1  
3
8
2
Status_vout±  
7
1
Read_vout±[1ꢀ:8]  
Read_vout±[7:±]  
6
Status_vout1  
Read_vout1[1ꢀ:8]  
±
2978fc  
60  
LTC2978  
PMBus COMMAND DESCRIPTION  
LOOP  
RESERVED BYTES  
BYTE  
BYTE  
BYTE  
238  
EE  
±x±±  
Bytes EE - FE  
Return ±x±± But  
Must Be Read  
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
DECIMAL  
HEX  
D4  
Dꢀ  
D6  
D7  
D8  
DECIMAL  
DATA LOOP 4  
Read_vout1[7:±]  
Status_mfr±  
212  
4
3
2
1
±
239  
24±  
241  
242  
243  
244  
24ꢀ  
246  
247  
248  
249  
2ꢀ±  
2ꢀ1  
2ꢀ2  
2ꢀ3  
2ꢀ4  
EF  
F±  
F1  
F2  
F3  
F4  
Fꢀ  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
213  
214  
Status_vout±  
21ꢀ  
Read_vout±[1ꢀ:8]  
Read_vout±[7:±]  
216  
LOOP  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
40 BYTES PER  
LOOP  
DECIMAL  
217  
218  
219  
22±  
221  
222  
223  
224  
22ꢀ  
226  
227  
228  
229  
23±  
231  
232  
233  
234  
23ꢀ  
HEX  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E±  
E1  
E2  
E3  
E4  
Eꢀ  
E6  
E7  
E8  
E9  
EA  
EB  
DECIMAL  
DATA LOOP 5  
Status_mfr7  
39  
38  
Status_vout7  
37  
Read_vout7[1ꢀ:8]  
Read_vout7[7:±]  
Status_mfr6  
36  
3ꢀ  
34  
Status_vout6  
33  
Read_vout6[1ꢀ:8]  
Read_vout6[7:±]  
Status_mfrꢀ  
32  
Use One Block  
Read Command  
to Read 2ꢀꢀ  
Bytes Total,  
from ±x±± to  
±xFE  
31  
3±  
Status_voutꢀ  
29  
Read_voutꢀ[1ꢀ:8]  
Read_voutꢀ[7:±]  
Status_mfr4  
28  
27  
26  
Status_vout4  
2ꢀ  
Read_vout4[1ꢀ:8]  
Read_vout4[7:±]  
Reserved  
24  
23  
22  
Status_temp  
21  
Read_temperature_  
1[1ꢀ:8]  
236  
237  
EC  
ED  
2±  
19  
Read_temperature_  
1[7:±]  
Status_mfr3  
Last Valid Fault  
Log Byte  
2978fc  
61  
LTC2978  
APPLICATIONS INFORMATION  
OVERVIEW  
tor converts V  
down to 3.3V which drives all of the  
PWR  
internal circuitry of the LTC2978.  
The LTC2978 is a power management IC that is capable  
of sequencing, margining, trimming, supervising output  
voltage for OV/UV conditions, providing fault manage-  
ment, and voltage read back for eight DC/DC converters.  
Input voltage and LTC2978 junction temperature read  
back are also available. Odd numbered channels can be  
configured to read back sense resistor voltages. Multiple  
LTC2978s can be synchronized to operate in unison using  
theSHARE_CLK,FAULTBandCONTROLpins.TheLTC2978  
utilizes a PMBus compliant interface and command set.  
Alternatively, power from an external 3.3V supply may be  
applied directly to the V  
age between 3.13V and 3.47V. Tie V  
pins 16 and 17 using a volt-  
DD33  
to V  
pins.  
PWR  
DD33  
See Figure 1ꢀ. All functionality is available when using  
this alternate power method. The higher voltages needed  
for the V  
pins and bias for the V  
pins are  
OUT_EN[±:3]  
SENSE  
charge pumped from V  
.
DD33  
SETTING COMMAND REGISTER VALUES  
The command register settings described herein are for  
the purpose of understanding and software development  
in a host processor. In actual practice, the LTC2978 can  
be completely configured for standalone operation with  
POWERING THE LTC2978  
The LTC2978 can be powered two ways. The first method  
requires that a voltage between 4.ꢀV and 1ꢀV be applied  
2
to the V  
pin. See Figure 14. An internal linear regula-  
theLTCUSBtoI C/SMBus/PMBuscontrollerandsoftware  
PWR  
GUI using intuitive menu driven objects.  
4.5V < V  
< 15V  
PWR  
V
V
IN_SNS  
SEQUENCE, SERVO, MARGIN AND RESTART  
OPERATIONS  
PWR  
0.1µF  
0.1µF  
0.1µF  
V
V
V
DD33  
DD33  
DD25  
LTC2978  
GND  
Command Units On or Off  
Three control parameters determine how a particular  
channel is turned on and off. The CONTROL pins, the  
OPERATION command and the value of the input voltage  
*SOME DETAILS  
OMITTED FOR CLARITY  
2978 F14  
measured at the V  
pin (V ). In all cases, V must  
IN_SNS  
IN IN  
Figure 14. Powering LT2978 Directly from an Intermediate Bus  
exceed VIN_ON in order to enable a start. When V drops  
IN  
belowVIN_OFFanimmediateOFFofallchannelswillresult.  
Refer to the OPERATION section in the data sheet for a  
detailed description of the ON_OFF_CONFIG command.  
Some examples of typical ON/OFF configurations are:  
1. ADC/DCconvertermaybeconfiguredtoturnonanytime  
EXTERNAL 3.3V  
0.1µF  
V
PWR  
V
V
V
DD33  
DD33  
DD25  
LTC2978  
GND  
V exceeds VIN_ON.  
IN  
2. A DC/DC converter may be configured to turn on only  
when it receives an OPERATION command.  
0.1µF  
*SOME DETAILS  
OMITTED FOR CLARITY  
2978 F15  
3. A DC/DC converter may be configured to turn on only  
via the CONTROL pin.  
Figure 15. Powering LTC2978 from External 3.3V Supply  
4. A DC/DC converter may be configured to turn on only  
when it receives an OPERATION command and the  
CONTROL pin is asserted.  
2978fc  
62  
LTC2978  
APPLICATIONS INFORMATION  
On Sequencing  
totheMFR_CONFIG_LTC2978commandfordetailsonhow  
to configure the output voltage servo.  
The TON_DELAY command sets the amount of time that  
a channel will wait following the start of an ON sequence  
Servo Modes  
before its V  
pin will enable a DC/DC converter. Once  
OUT_EN  
The ADC, DAC and internal processor comprise a digital  
servo loop that can be configured to operate in several  
usefulmodes.Theservotargetreferstothedesiredoutput  
voltage.  
the DC/DC converter has been enabled, the TON_RISE  
command determines the amount of time the LTC2978  
waits before soft connecting the V  
output and ser-  
DACPn  
voing the DC/DC converter output to VOUT_COMMAND.  
The TON_MAX_FAULT_LIMIT command determines the  
amountoftimeaftertheDC/DCconverterhasbeenenabled  
that an undervoltage condition will be tolerated before a  
fault occurs. If a TON_MAX_FAULT occurs, the channel  
can be configured to disable the DC/DC converter and  
propagatethefaulttootherchannelsusingthebidirectional  
FAULTBpins.Figure16showsatypicalon-sequenceusing  
the CONTROL pin.  
Continuous/noncontinuous trim mode. MFR_CONFIG_  
LTC2978 b[7]. In continuous trim mode, the servo will  
update the DAC in a closed loop fashion each time it  
takes a V  
reading. The update rate is determined by  
OUT  
the time it takes to step through the ADC MUX which is  
typically 1±±ms. See Electrical Characteristics Table Note  
6. In noncontinuous trim mode, the servo will drive the  
DAC until the ADC measures the output voltage desired  
and then stop updating the DAC.  
On State Operation  
Noncontinuous servo on warn mode. MFR_CONFIG_  
LTC2978b[7]=±, b[6]=1. Wheninnoncontinuousmode,  
the LTC2978 can additionally retrim (reservo) the output if  
the output drifts beyond the OV or UV warn limits.  
Once a channel has reached the ON state, the OPERATION  
command can be used to command the DC/DC converter’s  
output to margin high, margin low, or return to a nominal  
outputvoltageindicatedbyVOUT_COMMAND.Theuseralso  
hastheoptionofconfiguringachanneltocontinuouslytrim  
theoutputoftheDC/DCconvertertotheVOUT_COMMAND  
DAC Modes  
The DACs that drive the V  
pins can operate in several  
DACn  
voltage, or the channel’s V  
output can be placed in a  
DACPn  
useful modes. See MFR_CONFIG_LTC2978.  
high impedance state thus allowing the DC/DC converter  
output voltage to go to its nominal value, V . Refer  
•ꢀ Softꢀ connect.ꢀ Usingꢀ theꢀ LTCꢀ patentedꢀ softꢀ connectꢀ  
feature, the DAC output is driven to within 1 LSB of the  
voltage at the DC/DC's feedback node before connect-  
ing to avoid introducing transients on the output. This  
mode is used when servoing the output voltage. During  
start-up,theLTC2978waitsuntilTON_RISEhasexpired  
before connecting the DAC. This is the most common  
operating mode.  
DCn(NOM)  
V
CONTROL  
V
OUT_EN  
VOUT_0V_FAULT_LIMIT  
V
OUT_COMMAND  
DAC SOFT-CONNECTS  
AND BEGINS  
ADJUSTING OUTPUT  
V
DC(NOM)  
•ꢀ Disconnected.ꢀDACꢀoutputꢀisꢀhighꢀZ.  
VOUT_UV_FAULT_LIMIT  
V
OUT  
•ꢀ DACꢀmanualꢀwithꢀsoftꢀconnect.ꢀNonꢀservoꢀmode.ꢀTheꢀ  
DAC soft connects to the feedback node . The DAC code  
isdriventomatchthevoltageatthefeedbacknode.After  
connection, the DAC is moved by writing DAC codes to  
the device.  
2978 F16  
TON_RISE  
TON_DELAY  
TON_MAX_FAULT_LIMIT  
Figure 16. Typical On Sequence Using Control Pin  
2978fc  
63  
LTC2978  
APPLICATIONS INFORMATION  
•ꢀ DACꢀmanualꢀwithꢀhardꢀconnect.ꢀNonꢀservoꢀmode.ꢀTheꢀ  
DAC hard connects to the feedback node at the value  
in MFR_DAC. After connection, the DAC is moved by  
writing DAC codes to the device.  
Automatic Restart Via MFR_RESTART_DELAY  
Command and CONTROLn pin  
An automatic restart sequence can be initiated by driving  
the CONTROL pin to the off state for >1±μs then releas-  
ing it. The automatic restart disables all V  
pins  
OUT_EN  
Margining  
that are mapped to a particular CONTROL pin for a time  
period=MFR_RESTART_DELAYandthenstartsallDC-DC  
Converters according to their respective TON_DELAYs.  
The LTC2978 margins and trims the output of a DC/DC  
converter by driving current into or out of the feedback  
node or the trim pin. Preset limits for margining are stored  
in the VOUT_MARGIN_HIGH/LOW registers. Margining  
is actuated by writing the appropriate bits to the OPERA-  
TION register.  
(see Figure 17). V  
pins are mapped to one of the  
OUT_ENn  
CONTROLpinsbytheMFR_CONFIG_LTC2978command.  
This feature allows a host that is about to reset to restart  
the power in a controlled manner after it has recovered.  
Margining requires the DAC to be connected. Margin  
requests that occur when the DAC is disconnected will  
force the DAC to soft connect. When in the margin high/  
low state, the DAC cannot be disconnected. The DAC can  
only be disconnected from the ON state.  
CONTROL  
PIN BOUNCE  
V
CONTROL  
V
OUT_END  
2978 F17  
Off Sequencing  
TOFF_DELAY0  
MFR_RESTART_DELAY TON_DELAY0  
An off sequence is initiated using the CONTROL pin or  
the OPERATION command. The TOFF_DELAY command  
determines the amount of time that elapses from the be-  
Figure 17. Off Sequence with Automatic Restart  
ginning of the off sequence until each channel’s V  
OUT_EN  
pin is pulled low thus disabling its DC/DC converter.  
FAULT MANAGEMENT  
V
OUT  
Off Threshold Voltage  
Output Overvoltage and Undervoltage Faults  
The MFR_VOUT_DISCHARGE_THRESHOLD command  
register allows the user to specify the OFF threshold that  
the output voltage must decay below before the channel  
can enter/re-enter the ON state. The OFF threshold voltage  
is specified by multiplying MFR_VOUT_DISCHARGE_  
THRESHOLD and VOUT_COMMAND. In the event that an  
output voltage has not decayed below its OFF threshold  
before attempting to enter the ON state, the channel will  
continue to be held off, the appropriate bit is set in the  
STATUS_MFR_SPECIFICregister, andtheALERTBpinwill  
be asserted low. When the output voltage has decayed  
belowitsOFFthreshold,thechannelcanentertheONstate.  
ThehighspeedvoltagesupervisorOVandUVfaultthresh-  
oldsareconfiguredusingtheVOUT_OV_FAULT_LIMITand  
VOUT_UV_FAULT_LIMIT commands, respectively. The  
VOUT_OV_FAULT_RESPONSEandVOUT_UV_FAULT_RE-  
SPONSE commands determine the responses to OV/  
UV faults. Fault responses can range from disabling the  
DC/DC converter immediately, waiting to see if the fault  
condition persists for some interval before disabling  
the DC/DC converter, or allowing the DC/DC converter  
to continue operating in spite of the fault. If a DC/DC  
converter is disabled, the LTC2978 can be configured to  
retry or latch-off. The retry interval is specified using the  
2978fc  
64  
LTC2978  
APPLICATIONS INFORMATION  
Configuring the V  
Output  
MFR_RETRY_DELAY command. Latched faults are reset  
bytogglingtheCONTROLpin,usingtheOPERATIONcom-  
mand, or removing and reapplying the bias voltage to the  
IN_EN  
The V  
output may be used to disable the interme-  
IN_EN  
diate bus voltage in the event of an output OV or UV  
fault. Use the MFR_VINEN_OV_FAULT_RESPONSE and  
MFR_VINEN_UV_FAULT_RESPONSE registers to config-  
V
pin. All fault and warning conditions result in the  
IN_SNS  
ALERTB pin being asserted low and the corresponding  
bits being set in the status registers. The CLEAR_FAULTS  
command resets the contents of the status registers and  
deasserts the ALERTB output.  
ure the V  
pin to assert low in response to VOUT_OV/  
IN_EN  
UV fault conditions. The V  
output will stop pulling  
IN_EN  
low when the LTC2978 is commanded to re-enter the ON  
state following a faulted-off condition.  
Output Overvoltage and Undervoltage Warnings  
Acharge-pumpedµApull-upto12Visalsoavailableonthe  
OV and UV warning threshold voltages are processed  
by the LTC2978’s ADC. These thresholds are set by the  
VOUT_OV_WARN_LIMIT and VOUT_UV_WARN_LIMIT  
commands respectively. If a warning occurs, the corre-  
spondingbitsaresetinthestatusregistersandtheALERTB  
output is asserted low. Note that a warning will never  
V
output. Refer to the MFR_CONFIG_ALL_LTC2978  
IN_EN  
register description in the OPERATION section for more  
information.  
Figure 18 shows an application circuit where the V  
IN_EN  
outputisusedtotriggeraSCRcrowbarontheintermediate  
bus in order to protect the DC/DC converter’s load from a  
catastrophic fault such as a stuck top gate.  
cause a V  
output pin to disable a DC/DC converter.  
OUT_EN  
R
Q1  
SENSE  
0.007Ω  
Si4894BDY  
V
IN  
V
IN  
<15V  
C
BYPASS  
V
V
OUT  
IN_SNS  
V
V
PWR  
DACP0  
DC/DC  
CONVERTER  
100Ω  
68Ω  
V
V
SENSE  
GATE  
LTC4210-3  
SENSEP0  
CC  
0.1µF  
LTC2978*  
24.3k  
V
LOAD  
FB  
ON  
V
DACM0  
0.01µF  
TIMER GND  
V
10k  
SGND  
SENSEM0  
V
RUN/SS  
0.22µF  
OUT_EN0  
GND  
10k  
0.01µF  
2978 F18  
2907  
MCR12DC  
4.99k  
220Ω  
0.1µF  
BAT54  
REFP  
V
REFM  
IN_EN  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
V
V
V
GND  
DD33 DD33 DD25  
0.1µF  
0.1µF  
Figure 18. LTC2978 Application Circuit with Crowbar Protection on Intermediate Bus  
2978fc  
65  
LTC2978  
APPLICATIONS INFORMATION  
Mfr_faultb00_response, page = 0  
Mfr_faultbz0_propagate_ch0  
FAULTED_OFF  
CHANNEL 0  
EVENT PROCESSOR  
PAGE = 0  
FAULTB00  
FAULTB01  
Mfr_faultb01_response, page = 0  
Mfr_faultbz1_propagate_ch0  
Mfr_faultb00_response, page = 1  
Mfr_faultb01_response, page = 1  
Mfr_faultbz0_propagate_ch1  
FAULTED_OFF  
CHANNEL 1  
EVENT PROCESSOR  
PAGE = 1  
Mfr_faultbz1_propagate_ch1  
Mfr_faultb00_response, page = 2  
Mfr_faultb01_response, page = 2  
Mfr_faultbz0_propagate_ch2  
FAULTED_OFF  
CHANNEL 2  
EVENT PROCESSOR  
PAGE = 2  
Mfr_faultbz1_propagate_ch2  
Mfr_faultb00_response, page = 3  
Mfr_faultb01_response, page = 3  
Mfr_faultbz0_propagate_ch3  
FAULTED_OFF  
CHANNEL 3  
EVENT PROCESSOR  
PAGE = 3  
Mfr_faultbz1_propagate_ch3  
ZONE 0  
ZONE 1  
ZONE 0  
ZONE 1  
Mfr_faultb10_response, page = 4  
Mfr_faultb11_response, page = 4  
Mfr_faultbz0_propagate_ch4  
FAULTED_OFF  
CHANNEL 4  
EVENT PROCESSOR  
PAGE = 4  
FAULTB10  
FAULTB11  
Mfr_faultbz1_propagate_ch4  
Mfr_faultb10_response, page = 5  
Mfr_faultb11_response, page = 5  
Mfr_faultbz0_propagate_ch5  
FAULTED_OFF  
CHANNEL 5  
EVENT PROCESSOR  
PAGE = 5  
Mfr_faultbz1_propagate_ch5  
Mfr_faultb10_response, page = 6  
Mfr_faultb11_response, page = 6  
Mfr_faultbz0_propagate_ch6  
FAULTED_OFF  
CHANNEL 6  
EVENT PROCESSOR  
PAGE = 6  
Mfr_faultbz1_propagate_ch6  
Mfr_faultb10_response, page = 7  
Mfr_faultb11_response, page = 7  
Mfr_faultbz0_propagate_ch7  
FAULTED_OFF  
Mfr_faultbz1_propagate_ch7  
CHANNEL 7  
EVENT PROCESSOR  
PAGE = 7  
2978 F19  
Figure 19. Channel Fault Management Block Diagram  
2978fc  
66  
LTC2978  
APPLICATIONS INFORMATION  
Multichannel Fault Management  
•ꢀꢀ AꢀFAULTBzn pin can also be asserted low by an external  
driver in order to initiate an immediate off-sequence  
after a 1±µs deglitch delay.  
Multichannel fault management is handled using the  
bidirectional FAULTBzn pins. The “z” designates the fault  
zone which is either ± or 1. There are two fault zones in  
the LTC2978. Each zone contains 4-channels. Figure 19  
illustrates the connections between channels and the  
FAULTBzn pins.  
INTERCONNECT BETWEEN MULTIPLE LTC2978’S  
Figure 2± shows how to interconnect the pins in a typical  
multi-LTC2978 array.  
•ꢀꢀ TheꢀMFR_FAULTBz0_PROPAGATEꢀcommandꢀactsꢀlikeꢀ  
a programmable switch that allows faulted-off condi-  
tions from a particular channel (PAGE) to propagate  
to either FAULTBzn output in that channel’s zone. The  
MFR_FAULTBzn_RESPONSEcommandcontrolssimilar  
switches on the inputs to each channel that allow any  
channeltoshutdowninresponsetoanycombinationof  
the FAULTBzn pins within a zone. Channels responding  
to a FAULTBzn pin pulling low will attempt a new start  
sequencewhentheFAULTBznpininquestionisreleased  
by the faulted channel.  
•ꢀꢀ AllꢀV  
lines should be tied together in a star type  
IN_SNS  
connection at the point where V is to be sensed.  
IN  
This will minimize timing errors for the case where the  
ON_OFF_CONFIG is configured to start the LTC2978  
based on V and ignore the CONTROL line and the  
IN  
OPERATION command. In multi-part applications that  
are sensitive to timing differences, it is recommended  
thattheVin_share_enablebitoftheMFR_CONFIG_ALL  
register be set high in order to allow SHARE_CLK to  
synchronize on/off sequencing in response to the  
VIN_ON and VIN_OFF thresholds.  
•ꢀꢀ Toꢀestablishꢀdependenciesꢀacrossꢀfaultꢀzones,ꢀtieꢀtheꢀ  
fault pins together, e.g., FAULTB±1 to FAULTB1±. Any  
channel can depend on any other. To disable all chan-  
nels in response to any channel faulting off, short all  
the FAULTBzn pins together, and set MFR_FAULTBzn_  
PROPAGATE = ±x±1 and MFR_FAULTBzn_RESPONSE  
= ±x±F for all channels.  
•ꢀꢀ ConnectingꢀallꢀV  
lines together will allow selected  
IN_EN  
faults on any DC/DC converter’s output in the array to  
shut off a common input switch.  
TO V OF  
IN  
DC/DCs  
TO INPUT  
SWITCH  
TO HOST CONTROLLER  
LTC2978 N-1  
VIN_SNS  
LTC2978 N  
VIN_SNS  
VIN_EN  
VIN_EN  
SDA  
SCL  
SDA  
SCL  
ALERTB  
ALERTB  
CONTROL0  
CONTROL1  
WDI/RESETB  
FAULTB00  
FAULTB01  
FAULTB10  
FAULTB11  
SHARE_CLK  
PWRGD  
CONTROL0  
CONTROL1  
WDI/RESETB  
FAULTB00  
FAULTB01  
FAULTB10  
FAULTB11  
SHARE_CLK  
PWRGD  
GND  
GND  
2978 F20  
TO OTHER LTC2978s–10k EQUIV PULL-UP RECOMMENDED  
ON EACH LINE EXCEPT SHARE_CLK (USE 5.49k)  
Figure 20. Typical Connections Between Multiple LTC2978s  
2978fc  
67  
LTC2978  
APPLICATIONS INFORMATION  
•ꢀꢀ ALERTBꢀ isꢀ typicallyꢀ oneꢀ lineꢀ inꢀ anꢀ arrayꢀ ofꢀ PMBusꢀ •ꢀꢀ PWRGDreflectsthestatusoftheoutputsthataremappedꢀ  
converters. The LTC2978 allows a rich combination of  
faults and warnings to be propagated to the ALERTB  
pin.  
to it by the MFR_PWRGD_EN command. Figure 19  
shows all the PWRGD pins connected together, but any  
combination may be used. Note that the latency of the  
PWRGD pin response may be in the range of 3±ms to  
18ꢀms depending on ADC MUX settings. See Electrical  
Characteristics Table Note 6.  
•ꢀꢀ WDI/RESETBꢀcanꢀbeꢀusedꢀtoꢀputꢀtheꢀLTC2978ꢀinꢀtheꢀ  
power-on reset state. Pull WDI/RESETB low for at least  
t
to enter this state.  
RESETB  
A fast deassertion of PWRGD may be implemented by  
•ꢀꢀ TheFAULTBznlinescanbeconnectedtogethertocreate  
fault dependencies. Figure 2± shows a configuration  
where a fault on any FAULTBzn will pull all others low.  
This is useful for arrays where it is desired to abort a  
start-up sequence in the event any channel does not  
come up (see Figure 21).  
wire ANDing the V  
pin with the PWRGD pin. When  
IN_EN  
the UV fault threshold is crossed, V  
will pull low  
IN_EN  
if programmed to do so. See Figure 22.  
V
CONTROLn  
V
OUT0  
TON_DELAY0  
TON_DELAY1  
V
V
OUT1  
OUT2  
TON_DELAY2  
V
OUTn  
TON_DELAYn  
BUSSED  
VFAULTBzn  
PINS  
2978 F21  
TON_MAX_FAULT1  
Figure 21. Aborted On Sequence Due to Channel 1 Short  
V
IN_EN  
4.7k  
LTC2978  
V
DD33  
PWRGD  
FAST PWRGD  
DEASSERT  
2978 F22  
Figure 22. PWRGD Deassert  
2978fc  
68  
LTC2978  
APPLICATIONS INFORMATION  
APPLICATION CIRCUITS  
V
is the output voltage of the DC/DC converter  
DC(NOM)  
when the LTC2978’s V  
pin is in a high impedance  
DACP±  
Trimming and Margining DC/DC Converters with  
External Feedback Resistors  
state. R1± is a function of R2±, V  
, the voltage at  
DC(NOM)  
the feedback node (V ) when the loop is in regulation,  
FB  
and the feedback node’s input current (I ).  
FB  
Figure 23 shows a typical application circuit for trimming/  
margining a power supply with an external feedback  
R2± VFB  
R1± =  
(1)  
network. The V  
and V  
differential inputs  
SENSEP±  
SENSEM±  
VDC(NOM) IFB R2± – V  
FB  
sense the load voltage directly, and a correction voltage  
is developed between the V and V pins by the  
DACP±  
DACM±  
is Kelvin connected  
2. Solve for the value of R3± that yields the maximum  
required DC/DC converter output voltage V  
closed-loop servo algorithm. V  
DACM±  
.
DC(MAX)  
to the point-of-load GND in order to minimize the effects  
of load induced grounding errors. The V output  
WhenV  
is at its maximum voltage.  
isat±V, theoutputoftheDC/DCconverter  
DACP±  
DACP±  
is connected to the DC/DC converter’s feedback node  
through resistor R3±. For this configuration, set b[±] in  
MFR_CONFIG_LTC2978 = ±.  
R2± VFB  
R3± ≤  
(2)  
VDC(MAX) – VDC(NOM)  
Four-Step Resistor Selection Procedure for DC/DC  
Converters with External Feedback Resistors  
3. Solve for the minimum value of V  
that’s needed  
DACP±  
to yield the minimum required DC/DC converter output  
The following four-step procedure should be used to  
calculate the resistor values required for the application  
circuit shown in Figure 23.  
voltage V  
.
DC(MIN)  
The DAC has two full-scale settings, 1.38V and 2.6ꢀV.  
In order to select the appropriate full-scale setting,  
calculate the minimum required V  
voltage:  
1. AssumevaluesforfeedbackresistorR2±andthenominal  
output  
DACP±(F/S)  
DC/DC converter output voltage V  
for R1±.  
, and solve  
DC(NOM)  
R3±  
R2±  
VDACP±(F /S) > VDC(NOM) – VDC(MIN)  
+ VFB  
(
)
(3)  
V
IN  
V
V
IN  
4.5V < V  
< 15V  
IBUS  
V
V
PWR  
IN_SNS  
OUT  
0.1µF  
V
DACP0  
0.1µF  
R30  
DC/DC  
CONVERTER  
V
V
V
V
SENSEP0  
DD33  
DD33  
DD25  
R20  
R10  
LTC2978*  
V
LOAD  
FB  
V
DACM0  
0.1µF  
V
SGND  
SENSEM0  
V
RUN/SS  
OUT_EN0  
GND  
2978 F23  
GND  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
Figure 23. Application Circuit for DC/DC Converters with External Feedback Resistors  
2978fc  
69  
LTC2978  
APPLICATIONS INFORMATION  
4. Recalculate the minimum, nominal, and maximum  
DC/DC converter output voltages and the resulting  
margining resolution.  
relationships between these resistors and the Δ5 change  
in the output voltage of the DC/DC converter are typically  
expressed as:  
R2±  
R1±  
RTRIM 50  
VDC(NOM) = VFB 1+  
+ IFB R2±  
(4)  
RTRIM_DOWN  
=
RTRIM  
(8)  
ΔDOWN  
%
R2±  
R3±  
R2±  
R3±  
VDC(MIN) = VDC(NOM)  
V  
– V  
(ꢀ)  
(6)  
RTRIM_UP  
=
(
)
FB  
DACP±(F /S)  
VDC 100+ Δ %  
(
)
50  
VDC(MAX) = VDC(NOM)  
+
V  
UP  
FB  
RTRIM  
– 1  
(9)  
2 VREF ΔUP%  
Δ %  
UP  
R2±  
VDACP±(F /S)  
R3±  
where R  
is the resistance looking into the TRIM pin,  
VRES  
=
V/DAC LSB  
(7)  
TRIM  
1±24  
V
is the TRIM pin’s open-circuit output voltage and V  
REF  
DC  
istheDC/DCconverter’snominaloutputvoltage.Δ 5and  
UP  
Δ
5 denote the percentage change in the converter’s  
DOWN  
Trimming and Margining DC/DC Converters with a  
TRIM Pin  
output voltage when margining up or down, respectively.  
Figure 24 illustrates a typical application circuit for trim-  
ming/margining the output voltage of a DC/DC converter  
Two-Step Resistor and DAC Full-Scale Voltage  
Selection Procedure for DC/DC Converters with a  
TRIM Pin  
with a TRIM Pin. The LTC2978’s V  
pin connects to  
DACP±  
the TRIM pin through resistor R3±, and the V  
pin  
DACM±  
The following two-step procedure should be used to cal-  
culatetheresistorvalueforR3±andtherequiredfull-scale  
DAC voltage (refer to Figure 24).  
is connected to the converter’s point-of-load ground. For  
this configuration, set the DAC polarity bit Mfr_config_  
dac_pol in MFR_CONFIG_LTC2978 to 1.  
1. Solve for R3±:  
DC/DC converters with a TRIM pin are typically margined  
high or low by connecting an external resistor between  
50 – ΔDOWN  
%
R30 RTRIM  
(10)  
the TRIM pin and either the V  
or V  
pin. The  
SENSEP  
SENSEM  
ΔDOWN  
%
V
IN  
V
V
IN  
4.5V < V  
< 15V  
IBUS  
+
OUT  
V
V
IN_SNS  
PWR  
R30  
0.1µF  
TRIM  
V
V
DACP0  
0.1µF  
+
V
V
V
V
SENSEP0  
SENSE  
DD33  
DD33  
DD25  
DC/DC  
LTC2978*  
CONVERTER  
LOAD  
V
DACM0  
0.1µF  
V
V
SENSEM0  
SENSE  
ON/OFFB  
GND  
V
OUT_EN0  
GND  
2978 F24  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
Figure 24. Application Circuit for DC/DC Converters with Trim Pin  
2978fc  
70  
LTC2978  
APPLICATIONS INFORMATION  
Measuring Current with Inductor DCR  
2. Calculate the maximum required output voltage for  
V
DACP±  
:
Figure 26 shows the circuit for applications that require  
DCR current sense. A second order RC filter is required  
in these applications in order to minimize the ripple volt-  
age seen at the current sense inputs. A value of 1kΩ  
ΔUP%  
VDAC 1+  
V  
(11)  
P0  
REF  
ΔDOWN  
%
is suggested for R  
and R  
in order to minimize  
CM1  
CM2  
Note: Not all DC/DC’s converters follow these trim equa-  
tionsespeciallynewerbricks.ConsultLTCFieldApplication  
Engineering.  
gain errors due the current sense inputs’ internal resis-  
tance. C should be selected to provide cancellation  
CM1  
of the zero created by the DCR and inductance, i.e.  
=L/(DCRR ).C shouldbeselectedtoprovide  
C
CM1  
CM1  
CM2  
Measuring Current  
a second stage corner frequency at < 1/1± of the DC/DC  
converter’sswitchingfrequency.Inaddition,C needsto  
Odd numbered ADC channels may be used to measure  
supply current. Set the ADC to high resolution mode to  
configure for current measuring and improve sensitivity.  
Note that no OV or UV faults or warnings are reported in  
thismode,buttelemetryisavailablefromtheREAD_VOUT  
command using the 11-bit signed mantissa plus ꢀ-bit  
signed exponent L11 data format. Set the MFR_CON-  
FIG_LTC2978bitb[9]=1inordertoenablehighresmode.  
CM2  
be much smaller than C  
loading of the filter’s first stage.  
in order to prevent significant  
CM1  
R
CM  
R
CM  
V
V
SENSEP1  
C
C
CM  
LTC2978  
CM  
The V  
pin will assert low in this mode and cannot  
OUT_EN  
SENSEM1  
L
R
SNS  
be used to control a DC/DC converter. The V  
pin is also unavailable.  
output  
2978 F25  
DACP  
LOAD CURRENT  
Measuring Current with a Sense Resistor  
Figure 25. Sense Resistor Current Sensing Circuits  
A circuit for measuring current with a sense resistor is  
shown in Figure 2ꢀ. The balanced filter rejects both com-  
mon mode and differential mode noise from the output of  
theDC/DCconverter. Thelterisplaceddirectlyacrossthe  
sense resistor in series with the DC/DC converter’s induc-  
tor. Note that the current sense inputs must be limited to  
R
R
CM2  
CM2  
V
V
SENSEP1  
C
C
CM2  
LTC2978  
C
CM1  
C
CM1  
CM2  
SENSEM1  
less than 6V with respect to ground. Select R and C  
CM  
CM  
2978 F26  
such that the filter’s corner frequency is < 1/1± the DC/DC  
converter’sswitchingfrequency.Thiswillresultinacurrent  
sense waveform that offers a good compromise between  
the voltage ripple and the delay through the filter. A value  
R
R
CM1  
CM1  
L
DCR  
SWX0  
Figure 26. Sense Resistor Current Sensing Circuits  
1kΩ for R is suggested in order to minimize gain er-  
CM  
rors due to the current sense inputs’ internal resistance.  
2978fc  
71  
LTC2978  
APPLICATIONS INFORMATION  
Single Phase Design Example  
Measuring Multiphase Currents  
As a design example for a DCR current sense application,  
For current sense applications with more than one phase,  
RC averaging may be employed. Figure 27 shows an  
example of this approach for a 3-phase system with DCR  
current sensing. The current sense waveforms are aver-  
aged together prior to being applied to the second stage of  
assume L = 2.2μH, DCR = 10mΩ, and F = 500kHz.  
SW  
Let R  
= 1kΩ and solve for C  
:
CM1  
CM1  
2.2µH  
10m1kΩ  
C
= 220nF  
CM1  
the filter consisting of R  
and C . Because the R  
CM2 CM2 CM1  
resistors for the three phases are in parallel, the value of  
must be multiplied by the number of phases. Also  
R
Let R  
SW  
= 1kΩ. In order to get a second pole at  
CM1  
CM2  
/10 = 50kHz:  
note that since the DCRs are effectively in parallel, the  
value for IOUT_CAL_GAIN will be equal to the inductor’s  
DCR divided by the number of phases. Care should to be  
taken in the layout of the multiphase inductors to keep the  
PCB trace resistance from the DC side of each inductor to  
the summing node balanced in order to provide the most  
accurate results.  
F
1
C
= 3.18nF  
CM2  
2π50kHz 1kΩ  
Let C  
CM1  
= 3.3nF. Note that since C  
is much less than  
CM2  
CM2  
C
the loading effects of the second stage filter on the  
matched first stage are not significant. Consequently, the  
delay time constant through the filter for the current sense  
waveform will be approximately 3μs.  
Multiphase Design Example  
Using the same values for inductance and DCR from  
the previous design example, the value for R  
will be  
CM1  
3kΩ for a three phase DC/DC converter if C  
is left at  
CM1  
220nF. Similarly, the value for IOUT_CAL_GAIN will be  
DCR/3 = 3.33mΩ.  
SWX1  
R
R
CM1  
CM1  
R
CM2  
R
C
CM1  
C
CM2  
CM1  
L
I
I
SENSEP  
LTC2978  
DCR  
SENSEM  
2978 F27  
R
/3  
CM1  
R
CM2  
DCR  
DCR  
C
CM1  
C
CM2  
L
L
TO LOAD  
SWX2  
SWX3  
Figure 27. Multiphase DCR Current Sensing Circuits  
2978fc  
72  
LTC2978  
APPLICATIONS INFORMATION  
Anti-aliasing Filter Considerations  
while the VSENSEP1 input is tied to the REFP pin which  
has a typical output voltage of 1.23V. The voltage divider  
should be configured in order to present about 0.5V to the  
voltage sense inputs when the negative supply reaches its  
POWER_GOOD_ON threshold so that the current flowing  
out of the VSENSEMn pin is minimized to ~1µA. The  
relationship between the POWER_GOOD_ON register  
value and the corresponding negative supply value can  
be expressed as:  
Noisy environments require an anti-aliasing filter on the  
input to the LTC2978’s ADC. The R-C circuit shown in  
Figure 28 is adequate for most situations. Keep R40 = R50  
≤ 200Ω to minimize ADC gain errors, and select a value  
for capacitors C10 and C20 that doesn’t add too much  
additional response time to the OV/UV supervisor, e.g. τ  
10µs (R = 100Ω, C = 0.10µF).  
Sensing Negative Voltages  
R2  
R1  
+1 – 1µAR2  
VEE = VREFP (READ_VOUT) •  
Figure 29 shows the LTC2978 sensing a negative power  
supply (V ). The R1/R2 resistor divider translates the  
EE  
negativesupplyvoltagetotheLTC2978sVSENSEM1input  
Where READ_VOUT returns VSENSEP – VSENSEM  
V
IN  
V
V
IN  
4.5V < V  
< 15V  
IBUS  
V
V
IN_SNS  
PWR  
OUT  
0.1µF  
0.1µF  
0.1µF  
V
DACP0  
R30  
DC/DC  
CONVERTER  
V
V
V
V
SENSEP0  
DD33  
DD33  
DD25  
R40  
R50  
C10  
C20  
R20  
R10  
LTC2978*  
GND  
V
LOAD  
FB  
V
SENSEM0  
V
SGND  
DACM0  
V
RUN/SS  
OUT_EN0  
GND  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
2978 F28  
Figure 28. Antialiasing Filter on VSENSE Lines  
4.5V < V  
< 15V  
IBUS  
V
V
IN_SNS  
PWR  
LTC2978  
1.23V TYP  
0.1µF  
REFP  
REFM  
SDA  
V
SENSEP1  
SCL  
PMBus  
INTERFACE  
1µA AT 0.5V  
0.1µF  
R1 = 4.99k  
R2 = 120k  
ALERTB  
CONTROL  
V
SENSEM1  
WDI/RESETB  
FAULTB  
V
= –12V  
EE  
SHARE_CLK  
ASEL0  
POWER_GOOD_ON = 0.5V FOR V POWER_GOOD = –11.414V  
EE  
PWRGD  
WHERE V POWER_GOOD =  
EE  
ASEL1  
ONLY ONE OF EIGHT CHANNELS SHOWN,  
SOME DETAILS OMITTED FOR CLARITY  
WDI/RESETB  
WP GND  
2978 F29  
Figure 29. Sensing Negative Voltages  
2978fc  
73  
LTC2978  
APPLICATIONS INFORMATION  
2
Connecting the USB to I C/SMBus/PMBus Controller  
Figures 30 and 31 illustrate application schematics for  
powering, programming and communicating with one or  
to the LTC2978 in System  
2
more LTC2978's via the LTC I C/SMBus/PMBus controller  
2
The LTC USB to I C/SMBus/PMBus Controller can be  
regardless of whether or not system power is present.  
interfaced to LTC2978s on the user's board for program-  
ming, telemetry and system debug. The controller, when  
used in conjunction with LTpowerPlay software, provides  
a powerful way to debug an entire power system. Failures  
arequicklydiagnosedusingtelemetry,faultstatusregisters  
and the fault log. The final configuration can be quickly  
developed and stored to the LTC2978's EEPROM.  
Figure30showstherecommendedschematictousewhen  
the LTC2978 is powered by the system intermediate bus  
through its V  
pin.  
PWR  
REPEAT OUTLINED CIRCUIT FOR EVERY LTC2978  
4.5V TO 15V  
150k  
49.9k  
V
PWR  
0.1µF  
LTC2978  
ISOLATED 3.3V  
V
V
DD33  
DD33  
SCL  
Si1303  
GND  
0.1µF  
0.1µF  
SDA  
V
DD25  
TO LTC USB TO  
I C/SMBUS/PMBUS  
CONTROLLER  
PIN CONNECTIONS  
OMITTED FOR  
CLARITY  
2
10k  
10k  
5.49k  
SCL  
SDA  
SHARE_CLK  
WP GND  
TO/FROM OTHER  
LTC2978s  
2978 F30  
Figure 30. LTC Controller Connections When VPWR is Used  
2978fc  
74  
LTC2978  
APPLICATIONS INFORMATION  
Figure31showstherecommendedschematictousewhen  
the LTC2978 is powered by the system 3.3V through its  
node because this will interfere with bus communication  
in the absence of system power.  
V
and V  
pins. The LTC4212 ideal OR'ing circuit  
PWR  
2
DD33  
The LTC controller's I C/SMBus connections are opto-  
allowseitherthecontrollerorsystemtopowertheLTC2978.  
isolated from the PC's USB. The 3.3V from the controller  
and the LTC2978's V  
pin can be paralleled because  
Because of the controller's limited current sourcing capa-  
bility, onlytheLTC2978s, theirassociatedpullupresistors  
DD33  
the LTC LDOs that generate these voltages can be back-  
driven and draw <10μA. The controller's 3.3V current  
limit is 100mA.  
2
and the I C/SMBus pull-up resistors should be powered  
fromtheORed3.3Vsupply.Inaddition,anydevicesharing  
2
I C/SMBus bus connections with the LTC2978 should not  
have body diodes between the SDA/SCL pins and its V  
DD  
IDEAL  
DIODE  
0R’d 3.3V  
TP0101K-SSOT23  
SYSTEM  
LTC2978_3.3V  
V
V
V
V
PWR  
DD33  
DD33  
DD25  
3.3V  
LTC4412  
10k  
10k 5.49k  
0.1µF  
V
SENSE  
GATE  
STAT  
IN  
0.1µF  
GND  
CTL  
LTC2978  
PIN CONNECTIONS  
OMITTED FOR  
CLARITY  
ISOLATED 3.3V  
SCL  
SCL  
GND  
SDA  
SHARE_CLK  
SDA  
WP GND  
2978 F31  
TO LTC USB TO  
I C/SMBUS/PMBUS  
CONTROLLER  
TO/FROM OTHER  
LTC2978s  
2
2
NOTE: LTC CONTROLLER I C CONNECTIONS ARE OPTO-ISOLATED  
ISOLATED 3.3V FROM CONTROLLER CAN BE BACK DRIVEN AND WILL ONLY DRAW < 10µA  
ISOLATED 3.3V CURRENT LIMIT = 100mA  
Figure 31. LTC Controller Connections When LTC2978 Powered Directly from 3.3V  
2978fc  
75  
LTC2978  
APPLICATIONS INFORMATION  
LTpowerPlay: AN INTERACTIVE GUI FOR DIGITAL  
POWER  
during board bring-up to program or tweak the power  
management scheme in a system or to diagnose power  
issues when bringing up rails. LTpowerPlay utilizes Linear  
LTpowerPlay is a powerful Windows based development  
environmentthatsupportsLinearTechnologydigitalpower  
ICs with EEPROM, including the LTC2978 octal digital  
power supply manager. The software supports a variety  
of different tasks. You can use LTpowerPlay to evaluate  
Linear Technology ICs by connecting to a demo board  
system. LTpowerPlay can also be used in an offline mode  
(with no hardware present) in order to build a multi-chip  
configuration file that can be saved and reloaded at a later  
time. LTpowerPlay provides unprecedented diagnostic  
and debug features. It becomes a valuable diagnostic tool  
2
Technology's USB-to-I C/SMBus/PMBus Controller to  
communicate with one of many potential targets, includ-  
ing the DC1540 demo board set, the DC1508 socketed  
programming board, or a customer target system. The  
softwarealsoprovidesanautomaticupdatefeaturetokeep  
the software current with the latest set of device drivers  
and documentation. A great deal of context sensitive help  
is available within LTpowerPlay along with several tutorial  
demos. Complete information is available at:  
www.linear.com/ltpowerplay  
2978fc  
76  
LTC2978  
APPLICATIONS INFORMATION  
PCB ASSEMBLY AND LAYOUT SUGGESTIONS  
The proposed stencil design enables out-gassing of the  
solderpasteduringreflowaswellasregulatingthenished  
solder thickness.  
Bypass Capacitor Placement  
The LTC2978 requires 0.1µF bypass capacitors between  
PC Board Layout  
the V  
pins and GND, the V  
pin and GND, and the  
DD33  
DD25  
REFP pin and REFM pin. If the chip is being powered from  
the V input, then that pin should also be bypassed  
to GND by a 0.1µF capacitor. In order to be effective,  
these capacitors should be made of high quality ceramic  
dielectric such as X5R or X7R and be placed as close to  
the chip as possible.  
Mechanical stress on a PC board and soldering-induced  
stress can cause the LTC2978’s reference voltage and  
voltage drift to shift. A simple way to reduce these stress-  
related shifts is to mount the IC near the short edge of the  
PC board, or in a corner. The board edge acts as a stress  
boundary, or a region where the flexure of the board is  
minimal.  
PWR  
Exposed Pad Stencil Design  
Unused ADC Sense Inputs  
The LTC2978’s package is thermally and electrically  
efficient. This is enabled by the exposed die attach pad  
on the under side of the package which must be soldered  
down to the PCB or mother board substrate. It is a good  
practice to minimize the presence of voids within the  
exposed pad inter-connection. Total elimination of voids  
is difficult, but the design of the exposed pad stencil is  
key. Figure 32 shows a suggested screen print pattern.  
Connect all unused ADC sense inputs (V  
SENSEMn  
or  
SENSEPn  
V
) to GND. In a system where the inputs are  
connected to removable cards and may be left floating  
in certain situations, connect the inputs to GND using  
100k resistors. Place the 100k resistors before any filter  
components, as shown in Figure 33, to prevent loading  
of the filter.  
V
SENSEP  
LTC2978  
SENSEP  
100k  
V
100k  
2978 F33  
Figure 33. Connecting Unused Inputs to GND  
2978 F32  
Figure 32. Suggested Screen Pattern for Die Attach Pad  
2978fc  
77  
LTC2978  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UP Package  
64-Lead Plastic QFN (9mm × 9mm)  
(Reference LTC DWG # 05-08-1705 Rev C)  
0.70 ±0.05  
7.15 ±0.05  
7.50 REF  
8.10 ±0.05 9.50 ±0.05  
(4 SIDES)  
7.15 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 ± 0.05  
R = 0.115  
TYP  
9 .00 ± 0.10  
(4 SIDES)  
R = 0.10  
TYP  
63 64  
0.40 ± 0.10  
PIN 1 TOP MARK  
(SEE NOTE 5)  
1
2
PIN 1  
CHAMFER  
C = 0.35  
7.15 ± 0.10  
7.50 REF  
(4-SIDES)  
7.15 ± 0.10  
(UP64) QFN 0406 REV C  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION WNJR-5  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
6. DRAWING NOT TO SCALE  
2978fc  
78  
LTC2978  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
10/11 All sections revised  
3/12 Change MFR_CONFIG name to MFR_CONFIG_LTC2978  
DESCRIPTION  
PAGE NUMBER  
B
1 - 80  
C
19, 23,42  
Changed text “data log” to “fault log” under EEPROM Related Commands DATA_LOG Comments  
Elaborated on ON_OFF_CONFIG command description  
Added Unused ADC Sense Inputs section  
23  
31  
77  
80  
Renumbered Figure 33 to Figure 34  
2978fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
79  
LTC2978  
TYPICAL APPLICATION  
0.1µF  
3.3V  
0.1µF  
0.1µF  
13 35 34 65 19 18 17 16 15 33 32 14  
V
V
V
V
IN  
IN  
OUT  
39  
36  
60  
2
OUT  
V
V
V
DACP7  
DACP0  
R30  
R20  
R37  
R27  
DC/DC  
CONVERTER  
V
DC/DC  
CONVERTER  
SENSEP0  
SENSEP7  
V
V
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
FB  
FB  
37  
38  
3
R10  
V
V
V
R17  
SENSEM0  
DACM0  
SENSEM7  
61  
V
RUN/SS SGND  
GND  
SGND RUN/SS  
GND  
DACM7  
4
11  
V
V
OUT_EN7  
OUT_EN0  
V
V
IN  
40  
42  
59  
64  
OUT  
V
V
V
DACP6  
DACP1  
R36  
R26  
V
DC/DC  
CONVERTER  
SENSEP1  
SENSEP6  
V
FB  
43  
41  
1
V
V
V
R16  
SENSEM1  
DACM1  
SENSEM6  
58  
V
SGND RUN/SS  
GND  
DACM6  
5
10  
V
V
OUT_EN6  
OUT_EN1  
LTC2978  
V
V
V
V
IN  
IN  
OUT  
44  
46  
56  
62  
OUT  
V
V
V
DACP5  
DACP2  
R32  
R22  
R35  
R25  
DC/DC  
V
DC/DC  
CONVERTER  
SENSEP2  
SENSEP5  
CONVERTER  
V
FB  
V
LOAD  
FB  
47  
45  
63  
57  
R12  
V
V
V
R15  
SENSEM2  
DACM2  
SENSEM5  
V
RUN/SS SGND  
GND  
SGND RUN/SS  
GND  
DACM5  
6
9
V
V
OUT_EN5  
OUT_EN2  
V
V
IN  
50  
48  
55  
52  
OUT  
V
V
V
DACP4  
DACP3  
R34  
R24  
V
DC/DC  
CONVERTER  
SENSEP3  
SENSEP4  
V
FB  
49  
51  
53  
54  
V
V
V
R14  
SENSEM3  
DACM3  
SENSEM4  
V
SGND RUN/SS  
GND  
DACM4  
IN  
OUT  
7
8
INTERMEDIATE  
V
V
OUT_EN4  
OUT_EN3  
2978 F34  
BUS  
CONVERTER  
12 23 24 25 26 21 27 28 29 30 31 20  
10k  
22  
EN  
10k  
10k  
10k  
10k  
10k  
10k  
3.3V  
3.3V  
10k  
10k  
10k  
10k  
5.49k  
TO/FROM OTHER LTC2974s, LTC2978s AND MICROCONTROLLER  
Figure 34. LTC2978 Application Circuit with 3.3V Chip Power  
RELATED PARTS  
PART NUMBER  
LTC2970  
DESCRIPTION  
COMMENTS  
2
Dual I C Power Supply Monitor and Margining Controller  
LTC2974  
Quad Digital Power Supply Manager with EEPROM  
Accurate Current Measurement and Supervision  
LTC3880  
Dual Output PolyPhase® Step-Down DC/DC Controller with  
Digital Power System Management  
2978fc  
LT 0412 REV C • PRINTED IN USA  
80 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY